3 resultados para Discrete time system

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En el mundo de la simulación existen varios tipos de sistemas reales, entre los que se encuentran los sistemas de eventos discretos. Para poder simular estos sistemas se pueden utilizar, entre otras, herramientas basadas en el formalismo DEVS (Discrete EVents system Specification), como la utilizada en este proyecto: xDEVS. La simulación posee una importancia muy elevada en campos como la educación y la ciencia, y en ocasiones es necesario incluir datos del medio físico o sacar información al exterior del simulador. Por ello es necesario contar con herramientas que puedan realizar simulaciones utilizando sensores, actuadores, circuitos externos, etc., o lo que es lo mismo, que puedan realizar co-simulaciones entre software y hardware. De esta forma se puede facilitar el desarrollo de sistemas por medio de modelado y simulación, pudiendo extraer el hardware gradualmente y analizar los resultados en cada etapa. Este proyecto es de carácter incremental, y trata de extender la funcionalidad de la plataforma xDEVS para poder realizar co-simulaciones entre hardware y software sobre una Raspberry Pi. Para ello se van a utilizar circuitos lógicos como hardware externo y se enlazarán al simulador a través de ficheros de dispositivo, gestionados por módulos del kernel de Linux. Como caso de estudio se desarrolla la co-simulación entre hardware y software completa de un ascensor de siete plantas para mostrar el uso y funcionamiento en xDEVS, extrayendo los circuitos integrados de uno en uno.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given that landfills are depletable and replaceable resources, the right approach, when dealing with landfill management, is that of designing an optimal sequence of landfills rather than designing every single landfill separately. In this paper we use Optimal Control models, with mixed elements of both continuous and discrete time problems, to determine an optimal sequence of landfills, as regarding their capacity and lifetime. The resulting optimization problems involve splitting a time horizon of planning into several subintervals, the length of which has to be decided. In each of the subintervals some costs, the amount of which depends on the value of the decision variables, have to be borne. The obtained results may be applied to other economic problems such as private and public investments, consumption decisions on durable goods, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Para entender nuestro proyecto, debemos comprender DEVS. Dentro de los formalismos más populares de representación de sistemas de eventos discretos se encuentra DES. En la década de los 70, el matemático Bernard Zeigler propuso un formalismo general para la representación de dichos sistemas. Este formalismo denominado DEVS (Discrete EVent System Specification) es el formalismo más general para el tratamiento de DES. DEVS permite representar todos aquellos sistemas cuyo comportamiento pueda describirse mediante una secuencia de eventos discretos. Estos eventos se caracterizan por un tiempo base en el que solo un número de eventos finitos puede ocurrir. DEVS Modelado y Simulación tiene múltiples implementaciones en varios lenguajes de programación como por ejemplo en Java, C# o C++. Pero surge la necesidad de implementar una plataforma distribuida estable para proporcionar la mecánica de interoperabilidad e integrar modelos DEVS diversificados. En este proyecto, se nos dará como código base el core de xDEVS en java, aplicado de forma secuencial y paralelizada. Nuestro trabajo será implementar el core de manera distribuida de tal forma que se pueda dividir un sistema DEVS en diversas máquinas. Para esto hemos utilizado sockets de java para hacer la transmisión de datos lo más eficiente posible. En un principio deberemos especificar el número de máquinas que se conectarán al servidor. Una vez estas se hayan conectado se les enviará el trabajo específico que deberán simular. Cabe destacar que hay dos formas de dividir un sistema DEVS las cuales están implementadas en nuestro proyecto. La primera es dividirlo en módulos atómicos los cuales son subsistemas indivisibles en un sistema DEVS. Y la segunda es dividir las funciones de todos los subsistemas en grupos y repartirlos entre las máquinas. En resumen el funcionamiento de nuestro sistema distribuido será comenzar ejecutando el trabajo asignado al primer cliente, una vez finalizado actualizará la información del servidor y este mandara la orden al siguiente y así sucesivamente.