3 resultados para Defocus

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate visual results with two multifocal diffractive lenses designed with the same platform but with different additions. SETTING: Grupo Innova Ocular clinics. METHODS: A total of 50 eyes from 50 patients were included. Group 1 (n = 25) was implanted with the TECNIS® 1 ZLB +3.25 and group 2 (n = 25) with the TECNIS® 1 ZKB +2.75. Patients were assessed at 24 hours, 1 week and 1 month postoperatively. At surgical discharge, corrected (CDVA) and uncorrected distance visual acuity (UCDVA), near visual acuity (VA) at 25, 40 and 80 cm, visual quality and the defocus curve were measured. RESULTS: Changes in sphere and spherical equivalent were statistically significant (p<0.01) in both groups at 1 week and 1 month compared to preoperative values. In group 1, UCDVA logMAR at 1 month was 0.06 ± 0.02. In group 2, UCDVA at 1 month was 0.03 ± 0.03. In near vision, the TECNIS® 1 ZLB group obtained a VA logMAR of 0.35 ± 0.02 at 25 cm, 0.13 ± 0.02 at 40 cm and 0.27 ± 0.02 at 80 cm, while in the TECNIS® 1 ZKB group, the values were 0.38  ± 0.03, 0.14 ± 0.03 and 0.23 ± 0.06, respectively. No statistically significant differences were found either when results for visual quality were compared. CONCLUSION: Both the TECNIS® 1 ZLB and TECNIS® 1 ZKB are excellent options for obtaining good distance and near vision, in addition to providing good intermediate vision, especially at distances such as those required for working with computers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In recent years new models of intraocular lenses are appearing on the market to reduce requirements for additional optical correction. The purpose of this study is to assess visual outcomes following bilateral cataract surgery and the implant of a FineVision® trifocal intraocular lens (IOL). Methods Prospective, nonrandomized, observational study. Vision was assessed in 44 eyes of 22 patients (mean age 68.4 ± 5.5 years) before and 3 months after surgery. Aberrations were determined using the Topcon KR-1 W wave-front analyzer. LogMAR visual acuity was measured at distance (corrected distance visual acuity, CDVA 4 m), intermediate (distance corrected intermediate visual acuity, DCIVA 60 cm) and near (distance corrected near visual acuity, DCNVA 40 cm). The Pelli-Robson letter chart and the CSV-1000 test were used to estimate contrast sensitivity (CS). Defocus curve testing was performed in photopic and mesopic conditions. Adverse photic phenomena were assessed using the Halo v1.0 program. Results Mean aberration values for a mesopic pupil diameter were: total HOA RMS: 0.41 ± 0.30 μm, coma: 0.32 ± 0.22 μm and spherical aberration: 0.21 ± 0.20 μm. Binocular logMAR measurements were: CDVA −0.05 ± 0.05, DCIVA 0.15 ± 0.10, and DCNVA 0.06 ± 0.10. Mean Pelli-Robson CS was 1.40 ± 0.14 log units. Mean CSV100 CS for the 4 frequencies examined (A: 3 cycles/degree (cpd), B: 6 cpd, C: 12 cpd, D: 18 cpd) were 1.64 ± 0.14, 1.77 ± 0.18, 1.44 ± 0.24 and 0.98 ± 0.24 log units, respectively. Significant differences were observed in defocus curves for photopic and mesopic conditions (p < 0.0001). A mean disturbance index of 0.28 ± 0.22 was obtained. Conclusions Bilateral FineVision IOL implant achieved a full range of adequate vision, satisfactory contrast sensitivity, and a lack of significant adverse photic phenomena. Trial registration Eudract Clinical Trials Registry Number: 2014-003266-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose in this work a model for describing visual acuity (VV) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected VV among individuals; it also takes into account the accommodation and the “tolerance to defocus,” the latter through a phenomenological parameter. We have fitted the model to the VV data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of VV against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.