2 resultados para Dairy herds
em Universidade Complutense de Madrid
Resumo:
BACKGROUND Eradication of bovine tuberculosis (bTB) through the application of test-and-cull programs is a declared goal of developed countries in which the disease is still endemic. Here, longitudinal data from more than 1,700 cattle herds tested during a 12 year-period in the eradication program in the region of Madrid, Spain, were analyzed to quantify the within-herd transmission coefficient (β) depending on the herd-type (beef/dairy/bullfighting). In addition, the probability to recover the officially bTB free (OTF) status in infected herds depending on the type of herd and the diagnostic strategy implemented was assessed using Cox proportional hazard models. RESULTS Overall, dairy herds showed higher β (median 4.7) than beef or bullfighting herds (2.3 and 2.2 respectively). Introduction of interferon-gamma (IFN-γ) as an ancillary test produced an apparent increase in the β coefficient regardless of production type, likely due to an increase in diagnostic sensitivity. Time to recover OTF status was also significantly lower in dairy herds, and length of bTB episodes was significantly reduced when the IFN-γ was implemented to manage the outbreak. CONCLUSIONS Our results suggest that bTB spreads more rapidly in dairy herds compared to other herd types, a likely cause being management and demographic-related factors. However, outbreaks in dairy herds can be controlled more rapidly than in typically extensive herd types. Finally, IFN-γ proved its usefulness to rapidly eradicate bTB at a herd-level.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type (ST)1, Clonal Complex(CC)1, SCCmec V is one of the major Livestock-Associated (LA-) lineages in pig farming industry in Italy and is associated with pigs in other European countries. Recently, it has been increasingly detected in Italian dairy cattle herds. The aim of this study was to analyse the differences between ST1 MRSA and methicillin-susceptible S. aureus (MSSA) from cattle and pig herds in Italy and Europe and human isolates. Sixty-tree animal isolates from different holdings and 20 human isolates were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing, SCCmec typing, and by micro-array analysis for several virulence, antimicrobial resistance, and strain/host-specific marker genes. Three major PFGE clusters were detected. The bovine isolates shared a high (≥90% to 100%) similarity with human isolates and carried the same SCCmec type IVa. They often showed genetic features typical of human adaptation or present in human-associated CC1: Immune evasion cluster (IEC) genes sak and scn, or sea; sat and aphA3-mediated aminoglycoside resistance. Contrary, typical markers of porcine origin in Italy and Spain, like erm(A) mediated macrolide-lincosamide-streptograminB, and of vga(A)-mediated pleuromutilin resistance were always absent in human and bovine isolates. Most of ST(CC)1 MRSA from dairy cattle were multidrug-resistant and contained virulence and immunomodulatory genes associated with full capability of colonizing humans. As such, these strains may represent a greater human hazard than the porcine strains. The zoonotic capacity of CC1 LA-MRSA from livestock must be taken seriously and measures should be implemented at farm-level to prevent spill-over.