2 resultados para DOUBLE BARRIER STRUCTURES
em Universidade Complutense de Madrid
Resumo:
We introduce a model of a nonlinear double-barrier structure to describe in a simple way the effects of electron-electron scattering while remaining analytically tractable. The model is based on a generalized effective-mass equation where a nonlinear local field interaction is introduced to account for those inelastic scattering phenomena. Resonance peaks seen in the transmission coefficient spectra for the linear case appear shifted to higher energies depending on the magnitude of the nonlinear coupling. Our results are in good agreement with self-consistent solutions of the Schrodinger and Poisson equations. The calculation procedure is seen to be very fast, which makes our technique a good candidate for a rapid approximate analysis of these structures.
Resumo:
In this paper we show that if X is a smooth variety of general type of dimension m≥2 for which its canonical map induces a double cover onto Y, where Y is the projective space, a smooth quadric hypersurface or a smooth projective bundle over P1, embedded by a complete linear series, then the general deformation of the canonical morphism of X is again canonical and induces a double cover. The second part of the article proves the non-existence of canonical double structures on the rational varieties above mentioned. Our results have consequences for the moduli of varieties of general type of arbitrary dimension, since they show that infinitely many moduli spaces of higher dimensional varieties of general type have an entire “hyperelliptic” component. This is in sharp contrast with the case of curves or surfaces of lower Kodaira dimension.