5 resultados para DIMENSIONAL MODEL
em Universidade Complutense de Madrid
Resumo:
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range model for which the critical behavior is very similar to that of the short range model in four dimensions. We also study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional model, although we have much less precision than in the four-dimensional case.
Resumo:
The Cronbach's alpha is the most widely used method for estimating internal consistency reliability. This procedure has proved very resistant to the passage of time, even if its limitations are well documented and although there are better options as omega coefficient or the different versions of glb, with obvious advantages especially for applied research in which the ítems differ in quality or have skewed distributions. In this paper, using Monte Carlo simulation, the performance of these reliability coefficients under a one-dimensional model is evaluated in terms of skewness and no tau-equivalence. The results show that omega coefficient is always better choice than alpha and in the presence of skew items is preferable to use omega and glb coefficients even in small samples.
Resumo:
We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Resumo:
We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in three dimensions. We have simulated the site diluted three-states Potts model studying in detail the secondorder region of its phase diagram. We have found that the n exponent is compatible with the one of the three-dimensional diluted Ising model, whereas the h exponent is definitely different.