4 resultados para DIGITAL SKY SURVEY

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ~ 57 000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li i 6707.8 Å line or the R'_HK index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. Results. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ~25.2% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5% of the 102 candidates) have ages in agreement with the star having the same age as an MG member.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The associations and moving groups of young stars are excellent laboratories for investigating stellar formation in the solar neighborhood. Previous results have confirmed that a non-negligible fraction of old main-sequence stars is present in the lists of possible members of young stellar kinematic groups. A detailed study of the properties of these samples is needed to separate the young stars from old main-sequence stars with similar space motion, and identify the origin of these structures. Aims. Our intention is to characterize members of the young moving groups, determine their age distribution, and quantify the contamination by old main-sequence stars, in particular, for the Local Association. Methods. We used stars possible members of the young (~10-650 Myr) moving groups from the literature. To determine the age of the stars, we used several suitable age indicators for young main sequence stars, i.e., X-ray fluxes from the Rosat All-sky Survey database, photometric data from the Tycho-2, Hipparcos, and 2MASS database. We also used spectroscopic data, in particular the equivalent width of the lithium line Li I λ6707.8 Å and H_α, to constrain the range of ages of the stars. Results. By combining photometric and spectroscopic data, we were able to separate the young stars (10-650 Myr) from the old (> 1 Gyr) field ones. We found, in particular, that the Local Association is contaminated by old field stars at the level of ~30%. This value must be considered as the contamination for our particular sample, and not of the entire Local Association. For other young moving groups, it is more difficult to estimate the fraction of old stars among possible members. However, the level of X-ray emission can, at least, help to separate two age populations: stars with <200 Myr and stars older than this. Conclusions. Among the candidate members of the classical moving groups, there is a non-negligible fraction of old field stars that should be taken into account when studying the stellar birthrate in the solar neighborhood. Our results are consistent with a scenario in which the moving groups contain both groups of young stars formed in a recent star-formation episode and old field stars with similar space motion. Only by combining X-ray and optical spectroscopic data is it possible to distinguish between these two age populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The velocity function (VF) is a fundamental observable statistic of the galaxy population that is similar to the luminosity function in importance, but much more difficult to measure. In this work we present the first directly measured circular VF that is representative between 60 < v_circ < 320 km s^-1 for galaxies of all morphological types at a given rotation velocity. For the low-mass galaxy population (60 < v_circ < 170 km s^-1), we use the HI Parkes All Sky Survey VF. For the massive galaxy population (170 < v_circ < 320 km s^-1), we use stellar circular velocities from the Calar Alto Legacy Integral Field Area Survey (CALIFA). In earlier work we obtained the measurements of circular velocity at the 80% light radius for 226 galaxies and demonstrated that the CALIFA sample can produce volume-corrected galaxy distribution functions. The CALIFA VF includes homogeneous velocity measurements of both late and early-type rotation-supported galaxies and has the crucial advantage of not missing gas-poor massive ellipticals that HI surveys are blind to. We show that both VFs can be combined in a seamless manner, as their ranges of validity overlap. The resulting observed VF is compared to VFs derived from cosmological simulations of the z = 0 galaxy population. We find that dark-matter-only simulations show a strong mismatch with the observed VF. Hydrodynamic simulations fare better, but still do not fully reproduce observations.