3 resultados para Critical point
em Universidade Complutense de Madrid
Resumo:
We show numeric evidence that, at low enough temperatures, the potential energy density of a glass-forming liquid fluctuates over length scales much larger than the interaction range. We focus on the behavior of translationally invariant quantities. The growing correlation length is unveiled by studying the finite-size effects. In the thermodynamic limit, the specific heat and the relaxation time diverge as a power law. Both features point towards the existence of a critical point in the metastable supercooled liquid phase.
Resumo:
The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange model with antiferromagnetic (AFM) superexchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase transition, only short-range ordering would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.
Resumo:
Considering the disorder caused in manganites by the substitution Mn→Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the variational mean-field technique. The subtle interplay between double exchange, superexchange, and disorder causes similar effects on the dependence of T_(C) on the percentage of Mn substitution in the cases considered. Yet, in La_(2/3)Ca_(1/3)Mn_(1-y)Ga_(y)O_(3) our results suggest a quantum critical point (QCP) for y ≈ 0.1–0.2, associated to the localization of the electronic states of the conduction band. In the case of La_(x)Ca_(x)Mn_(1-y)Fe_(y)O_(3) (with x = 1/3,3/8) no such QCP is expected.