2 resultados para Coseismic Uplift

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landscape units based on the visual features of the relief have been distinguished in the “Barranco del Río Dulce Natural Park” (Spain). These units are geomorphic entities composed of several elementary landforms and characterized by a visual internal homogeneity, and contrast with other landscape units in their location, height, profile and gradients, reflecting their different evolution and genesis. Landscape units bear some subjectivity in their definition and in their boundary location due to the overlapping of geomorphic processes along time. Visual, compositional and conventional boundaries have been used for mapping. Neogene landscape evolution mainly occurred through thrust faulting at the Iberian Ranges-Tagus Basin boundary, driving tectonic uplift and erosion of the Ranges and correlative sedimentation in the Basin. Erosion of the Ranges occurred with the development of planation surfaces, leaving minor isolated reliefs in the upland plains landscape. The lowering of the base level, caused by the endorheic–exorheic transition of the Tagus Basin in the Pliocene, originates fluvial entrenchment and water table lowering with development of the first fluvial valleys and the capture of karstic depressions. Two subsequent phases of renewed fluvial incision (Pleistocene) lead to abandonment of some Pliocene valleys, fluvial captures, and development and reincision of tributaries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the center of Iberia fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. This heterogeneity has been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.