3 resultados para Continuous Variable Systems

em Universidade Complutense de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accuracy in determining the quantum state of a system depends on the type of measurement performed. Homodyne and heterodyne detection are the two main schemes in continuous-variable quantum information. The former leads to a direct reconstruction of the Wigner function of the state, whereas the latter samples its Husimi Q function. We experimentally demonstrate that heterodyne detection outperforms homodyne detection for almost all Gaussian states, the details of which depend on the squeezing strength and thermal noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invention relates to a variable-spectrum solar simulator for characterising photovoltaic systems. The simulator can be used to obtain a spectrum adjusted to the solar spectrum, both for a standard spectrum or a real spectrum adjusted to local irradiation conditions. The simulator also allows the spatial-angular characteristics of the sun to be reproduced. The invention comprises: a broad-spectrum light source, the flux from which is emitted through an aperture; an optical system which collimates the primary source; a system which disperses the beam chromatically; an optical system which forms an image of the dispersed primary source at a given position, at which a spatial mask is placed in order to filter the received irradiance spectrally; an optical system which captures the filtered spectrum and returns, mixes and concentrates same in a secondary source with the desired spectral, angular, and spatial characteristics; an optical system which collimates the secondary source such that it reproduces the angular characteristics of the sun; and a control system.