2 resultados para Connected dominating set
em Universidade Complutense de Madrid
Resumo:
n this paper we deal with the problem of obtaining the set of k-additive measures dominating a fuzzy measure. This problem extends the problem of deriving the set of probabilities dominating a fuzzy measure, an important problem appearing in Decision Making and Game Theory. The solution proposed in the paper follows the line developed by Chateauneuf and Jaffray for dominating probabilities and continued by Miranda et al. for dominating k-additive belief functions. Here, we address the general case transforming the problem into a similar one such that the involved set functions have non-negative Möbius transform; this simplifies the problem and allows a result similar to the one developed for belief functions. Although the set obtained is very large, we show that the conditions cannot be sharpened. On the other hand, we also show that it is possible to define a more restrictive subset, providing a more natural extension of the result for probabilities, such that it is possible to derive any k-additive dominating measure from it.
Resumo:
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.