5 resultados para Conformal Antennas
em Universidade Complutense de Madrid
Resumo:
Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.
Resumo:
The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.
Resumo:
A few years ago, some of the authors of the paper demonstrated the resonance of optical antennas in the visible frequencies. The results of that paper were obtained using experimental techniques that were primarily developed for the measurement of antenna-coupled detectors in the infrared. In the present paper, we show the results of spatial-response mapping obtained by using a dedicated measurement station for the characterization of optical antennas in the visible. At the same time, the bottleneck in the spatial responsivity calculation represented by the beam characterization has been approached from a different perspective. The proposed technique uses a collection of knife edge measurements in order to avoid the use of any model of the laser beam irradiance. By taking all this into account we present the spatial responsivity of optical antennas measured with high spatial resolution in the visible.
Resumo:
One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.