2 resultados para Computational time
em Universidade Complutense de Madrid
Resumo:
Finite-Differences Time-Domain (FDTD) algorithms are well established tools of computational electromagnetism. Because of their practical implementation as computer codes, they are affected by many numerical artefact and noise. In order to obtain better results we propose using Principal Component Analysis (PCA) based on multivariate statistical techniques. The PCA has been successfully used for the analysis of noise and spatial temporal structure in a sequence of images. It allows a straightforward discrimination between the numerical noise and the actual electromagnetic variables, and the quantitative estimation of their respective contributions. Besides, The GDTD results can be filtered to clean the effect of the noise. In this contribution we will show how the method can be applied to several FDTD simulations: the propagation of a pulse in vacuum, the analysis of two-dimensional photonic crystals. In this last case, PCA has revealed hidden electromagnetic structures related to actual modes of the photonic crystal.
Resumo:
Invasive candidiasis (IC) is an opportunistic systemic mycosis caused by Candida species (commonly Candida albicans) that continues to pose a significant public health problem worldwide. Despite great advances in antifungal therapy and changes in clinical practices, IC remains a major infectious cause of morbidity and mortality in severely immunocompromised or critically ill patients, and further accounts for substantial healthcare costs. Its impact on patient clinical outcome and economic burden could be ameliorated by timely initiation of appropriate antifungal therapy. However, early detection of IC is extremely difficult because of its unspecific clinical signs and symptoms, and the inadequate accuracy and time delay of the currently available diagnostic or risk stratification methods. In consequence, the diagnosis of IC is often attained in advanced stages of infection (leading to delayed therapeutic interventions and ensuing poor clinical outcomes) or, unfortunately, at autopsy. In addition to the difficulties encountered in diagnosing IC at an early stage, the initial therapeutic decision-making process is also hindered by the insufficient accuracy of the currently available tools for predicting clinical outcomes in individual IC patients at presentation. Therefore, it is not surprising that clinicians are generally unable to early detect IC, and identify those IC patients who are most likely to suffer fatal clinical outcomes and may benefit from more personalized therapeutic strategies at presentation. Better diagnostic and prognostic biomarkers for IC are thus needed to improve the clinical management of this life-threatening and costly opportunistic fungal infection...