8 resultados para Compton polarimeter
em Universidade Complutense de Madrid
Resumo:
We explore the nature of Infrared Excess sources (IRX), which are proposed as candidates for luminous [L_X(2–10 keV) > 10^43 erg s^−1] Compton thick (NH > 2 × 1024 cm−2) QSOs at z≈ 2. Lower redshift, z≈ 1, analogues of the distant IRX population are identified by first redshifting to z= 2 the spectral energy distributions (SEDs) of all sources with secure spectroscopic redshifts in the AEGIS (6488) and the GOODS-North (1784) surveys and then selecting those that qualify as IRX sources at that redshift. A total of 19 galaxies are selected. The mean redshift of the sample is z≈ 1. We do not find strong evidence for Compton thick QSOs in the sample. For nine sources with X-ray counterparts, the X-ray spectra are consistent with Compton thin active galactic nucleus (AGN). Only three of them show tentative evidence for Compton thick obscuration. The SEDs of the X-ray undetected population are consistent with starburst activity. There is no evidence for a hot dust component at the mid-infrared associated with AGN heated dust. If the X-ray undetected sources host AGN, an upper limit of L_X(2–10 keV) = 10^43 erg s^−1 is estimated for their intrinsic luminosity. We propose that a large fraction of the z≈ 2 IRX population is not Compton thick quasi-stellar objects (QSOs) but low-luminosity [L_X(2–10 keV) < 10^43 erg s^−1], possibly Compton thin, AGN or dusty starbursts. It is shown that the decomposition of the AGN and starburst contribution to the mid-IR is essential for interpreting the nature of this population, as star formation may dominate this wavelength regime.
Resumo:
We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January–March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3–79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep G » 3 power law, with no evidence for an exponential cutoff or additional hard components up "aprox" 80keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-toVHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.
Resumo:
Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.
Resumo:
Context. Runaway O- and early B-type stars passing through the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high-energy photons by nonthermal radiative processes, but their efficiency is still debated. Aims. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. Methods. We applied our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high-energy emission, and to the transition phase of a supergiant star in the late stages of its life. Results. From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high-energy flux emission from the bow shock produced by BD+43 3654, and the possibility of high-energy emission from the bow shock formed by a supergiant star during the transition phase from blue to red supergiant. Conclusions. Bow shocks formed by different types of runaway stars are revealed as a new possible source of high-energy photons in our neighborhood.
Resumo:
Context. Accretion onto supermassive black holes is believed to occur mostly in obscured active galactic nuclei (AGN). Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Aims. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012, ApJ, 748, 142; objects with an infrared (IR) power-law spectral shape), are effective at selecting X-ray type-2 AGN (i.e., absorbed N_H > 10^22 cm^-2). Methods. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the Chandra Deep Field South. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption at the redshift of each source and a possible soft X-ray component. Results. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (N_H^intr > 10^22 cm^-2) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources (similar to 2/3) than for those sources that do not meet this IR selection criteria (~1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. Conclusions. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.
Resumo:
We present the active galactic nucleus (AGN), star-forming, and morphological properties of a sample of 13 MIR-luminous (∫_24 700 μJy) IR-bright/optically-faint galaxies (IRBGs, ∫_24/f_R≲ 1000). While these z ∼ 2 sources were drawn from deep Chandra fields with >200 ks X-ray coverage, only seven are formally detected in the X-ray and four lack X-ray emission at even the 2σ level. Spitzer InfraRed Spectrograph (IRS) spectra, however, confirm that all of the sources are AGN-dominated in the mid-IR, although half have detectable polycyclic aromatic hydrocarbon (PAH) emission responsible for ∼25% of their mid-infrared flux density. When combined with other samples, this indicates that at least 30%–40% of luminous IRBGs have star formation rates in the ultraluminous infrared galaxy (ULIRG) range (∼100–2000 M_⨀ yr^−1). X-ray hardness ratios and MIR to X-ray luminosity ratios indicate that all members of the sample contain heavily X-ray obscured AGNs, 80% of which are candidates to be Compton thick. Furthermore, the mean X-ray luminosity of the sample, log L_2–10 keV(erg s^−1) ∼44.6, indicates that these IRBGs are Type 2 QSOs, at least from the X-ray perspective. While those sources most heavily obscured in the X-ray are also those most likely to display strong silicate absorption in the mid-IR, silicate absorption does not always accompany X-ray obscuration. Finally, ∼70% of the IRBGs are merger candidates, a rate consistent with that of sub-mm galaxies (SMGs), although SMGs appear to be physically larger than IRBGs. These characteristics are consistent with the proposal that these objects represent a later, AGN-dominated, and more relaxed evolutionary stage following soon after the star-formation-dominated one represented by the SMGs.
Resumo:
Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E >100 GeV) γ rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsähovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46±0.16)×10^(−11) ph cm^(−2) s^(−1) . The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission.
Resumo:
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) γ-ray band with a statistical significance of 5.9 σ. The integral flux above 150 GeV is estimated to be (2.0 ± 0.5) per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100MeV < E < 100 GeV) γ-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34±0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution (SED) of H1722+119 shows surprising behaviour in the ∼ 3×1014 −1018 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.