3 resultados para Collisional orogeny

em Universidade Complutense de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In TJ-II stellarator plasmas, in the electron cyclotron heating regime, an increase in the ion temperature is observed, synchronized with that of the electron temperature, during the transition to the core electron-root confinement (CERC) regime. This rise in ion temperature should be attributed to the joint action of the electron–ion energy transfer (which changes slightly during the CERC formation) and an enhancement of the ion confinement. This improvement must be related to the increase in the positive electric field in the core region. In this paper, we confirm this hypothesis by estimating the ion collisional transport in TJ-II under the physical conditions established before and after the transition to CERC. We calculate a large number of ion orbits in the guiding-centre approximation considering the collisions with a background plasma composed of electrons and ions. The ion temperature profile and the thermal flux are calculated in a self-consistent way, so that the change in the ion heat transport can be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluorescence technique. In this work, several sets of fluorescence yield data (i.e. absolute value and quenching parameters) are described and compared. A simple procedure to study the effect of the assumed fluorescence yield on the reconstructed shower parameters (energy and shower maximum depth) as a function of the primary features has been developed. As an application, the effect of water vapor and temperature dependence of the collisional cross section on the fluorescence yield and its impact on the reconstruction of primary energy and shower maximum depth has been studied. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. Methods. The full sample of 177 FGK stars with d ≤ 20 pc proposed for the DUst around NEarby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 μm were obtained, and were complemented in some cases with data at 70 μm and at 250, 350, and 500 μm SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d ≤ 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26^+0.21_-0.14 (6 objects with excesses out of 23 F stars), 0.21^+0.17_-0.11 (7 out of 33 G stars), and 0.20^+0.14_-0.09 (10 out of 49 K stars); the fraction for all three spectral types together is 0.22^+0.08_-0.07 (23 out of 105 stars). The uncertainties correspond to a 95% confidence level. The medians of the upper limits of L_dust/L_∗ for each spectral type are 7.8 × 10^-7 (F), 1.4 × 10^-6 (G), and 2.2 × 10^-6 (K); the lowest values are around 4.0 × 10^-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.