5 resultados para Ciencia de la Computación e Inteligencia Artificial

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Han transcurrido varios años desde que se comenzó a hablar de Solvencia II y hoy es una realidad; cuyo objetivo es el desarrollo y establecimiento de un nuevo sistema que permita determinar los recursos propios mínimos a requerir a cada aseguradora, en función de los riesgos asumidos y la gestión que se realice de ellos. Así mismo, engloba un conjunto de iniciativas para la revisión de la normativa existente, la valoración y supervisión de la situación financiera global de las entidades aseguradoras y modos de actuación interna de las mismas. Uno de los temas más controvertidos bajo esta regulación es cómo conseguir una adecuada evaluación de los riesgos asumidos por las entidades. Esto se traduce en lograr identificar las causas que puedan suponer una pérdida en sus recursos; así como en innovar en el campo técnico para lograr una correcta cuantificación de los riesgos posibles en los que podrían estar expuestas las entidades. El objetivo de este trabajo es mostrar la posibilidad de utilizar dos enfoques metodológicos distintos para la evaluación de riesgos: uno no paramétrico para lo cual se recurrirá a las técnicas de Inteligencia Artificial y, en contraste, la aplicación de los Modelos Lineales Generalizados provenientes de la estadística paramétrica. De esta forma, lograr establecer una serie de reglas de decisión básicas, a manera de herramienta de clasificación, que puedan ser capaces de determinar los perfiles de clientes susceptibles a la cancelación de su póliza. La aplicación práctica de ambas metodologías, se llevará a cabo con la finalidad de analizar el Riesgo de Caída de Cartera; el cual hace referencia a uno de los tantos riesgos medibles que el sector habrá de tener en cuenta de acuerdo a Solvencia II...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La industria del videojuego ha avanzado a grandes pasos durante los últimos años respecto a la creación de "inteligencia artificial" para sus personajes, afirmando siempre que la utilizan para dotar de realismo y credibilidad a sus personajes. Sin embargo este concepto ha variado sustancialmente año tras año, y aún hoy, la inteligencia que encontramos en los personajes está lejos de lo que uno podría esperar de ello, incluso lejos de lo ya estudiado y conocido en la correspondiente disciplina académica. En el afán por desarrollar personajes que sean realmente autónomos y tomen sus propias decisiones tras razonar acerca de lo que ocurre en el juego, en este trabajo porponemos un sistema capaz de dotar de control autónomo a los personajes de un videojuego y con potencial para mostrar una mayor inteligencia. Para ello conectamos un armazón de desarrollo de videojuegos llamado IsoUnity, desarrollado sobre el entorno Unity, con un sistema multi-agente llamado Jason e implementado en Java, que utiliza el conocido modelo cognitivo Creencia-Deseo-Intención para representar el estado interno de la mente de los agentes, que en nuestro caso serán personajes de videojuego. A la hora de producir un videojuego, se implementa mediante un sistema de agentes inteligentes, con información subjetiva sobre el mundo, objetivos y planes y tareas que realizar, el jugador tendrá una experiencia más plena. Nuestra visión es la de adoptar este sistema en el desarrollo de videojuegos independientes de perspectiva isométrica y recursos sencillos de estilo retro, de ahí el uso de IsoUnity. En esta memoria, además de explicar en detalle nuestro sistema de control, documentamos las pruebas y las adaptaciones que proponemos para llevar a la práctica este concepto, sentando las bases tecnológicas para producir un videojuego completo utilizando este sistema. Siguiendo el camino iniciado en anteriores Trabajos de Fin de Grado de esta Facultad, queríamos continuar en esa línea de trabajo afinando más el concepto y abordando un tema nuevo, el de dotar a los personajes de videojuegos creados con IsoUnity de una autonomía mayor y mejores herramientas de toma de decisión para poder interactuar con su entorno y con otros personajes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La cantidad de datos biológicos y médicos que se produce hoy en día es enorme, y se podría decir que el campo de las ciencias de la vida forma parte ya del club del Big Data. Estos datos contienen información crucial que pueden ayudar a comprender mejor los mecanismos moleculares en los sistemas biológicos. Este conocimiento es fundamental para el progreso en el diagnóstico y en el tratamiento de las enfermedades. La Bioinformática, junto con la Biología Computacional, son disciplinas que se encargan de organizar, analizar e interpretar los datos procedentes de la Biología Molecular. De hecho, la complejidad y la heterogeneidad de los problemas biológicos requieren de un continuo diseño, implementación y aplicación de nuevos métodos y algoritmos. La minería de datos biológicos es una tarea complicada debido a la naturaleza heterogénea y compleja de dichos datos, siendo éstos muy dependientes de detalles específicos experimentales. Esta tesis se basa en el estudio de un problema biomédico complejo: la menor probabilidad de desarrollar algunos tipos de cáncer en pacientes con ciertos trastornos del sistema nervioso central (SNC) u otros trastornos neurológicos, y viceversa. Denominamos a esta condición como comorbilidad inversa. Desde el punto de vista médico, entender mejor las conexiones e interacciones entre cáncer y trastornos neurológicos podría mejorar la calidad de vida y el efecto de la asistencia médica de millones de personas en todo el mundo. Aunque la comorbilidad inversa ha sido estudiada a nivel médico, a través de estudios epidemiológicos, no se ha investigado en profundidad a nivel molecular...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad, existe un concepto que está cobrando especial relevancia, el cual es conocido como IoT (Internet of Things, Internet de las Cosas) [1]. En el IoT [2] se define la interconexión digital de objetos cotidianos con internet, esto significa que no sólo “los humanos” tenemos la capacidad de conectarnos a internet, sino que caminamos hacia una nueva era donde prácticamente cualquier cosa podría ser conectada a internet, desde un reloj (smartwatch), como tenemos en la actualidad, hasta una nevera, una persiana, una sartén, etc. En este proyecto se ha querido aplicar ciertas fases del IoT, para convertir una información ambiental poco sesgada, proporcionada por una pequeña estación meteorológica, en un valor adicional a la hora de tomar decisiones basadas en las variables ambientales, para determinar, según un proceso de aprendizaje automático, la sensación que una persona percibe en relación al tiempo meteorológico en un determinado momento. Para ello utilizamos una serie de sensores que se encargan de darnos la información ambiental necesaria (como la temperatura, humedad y presión atmosférica) una fuente de procesamiento como puede ser un micro-controlador, para después poder manejarla y procesarla en la nube, de forma remota, adquiriendo así el valor añadido que se espera en el IoT. Además, en este proyecto se aplican técnicas de Inteligencia Artificial para ayudar al usuario en esa toma de decisiones, mediante un proceso de entrenamiento previo, que permite obtener información relevante para aplicarla posteriormente en el contexto meteorológico mencionado. Para manejar todos estos conceptos y elementos, se hace uso de servicios Web, bases de datos, procesamiento y aprendizaje automático, integrando todos los servicios en una misma plataforma que facilite la comunicación de todos los elementos involucrados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La constitución atómica de la materia está en la base de la química. Saber cómo se unen y cómo se separan los átomos es tener la clave de las transformaciones de la materia, que son el objeto de esta ciencia. Tendemos a imaginarnos a los átomos como pequeñas partículas, como bolitas, pero desde los años 1930 sabemos que no se puede entender su comportamiento microscópico mediante la física clásica. La mejor teoría que tenemos para este dominio es la mecánica cuántica, pero en ella la descripción más fundamental y completa de los sistemas no es a través de las variables clásicas, propias de las partículas, como la posición y el momento, sino de la función de onda. La función de onda es un objeto matemático que contiene toda la información del sistema. Sin embargo, ni extraer esa información ni interpretarla es sencillo, lo que supone una serie de problemas. Por ejemplo, casi noventa años después de su nacimiento la teoría cuántica apenas está presente en la enseñanza secundaria. Y el problema no afecta sólo al ámbito educativo. Por ejemplo, la química había desarrollado desde mediados del siglo XIX la teoría estructural, de enorme poder explicativo, que los químicos siguen empleando hoy en día. Además, si la función de onda de una partícula es un objeto extraño, la de un sistema de varias, como una molécula es, además, difícil de tratar matemáticamente. Pero la química necesitaba acceder a la estructura microscópica y a la reactividad de las moléculas... Mucho antes de que el avance de la computación pusiera a disposición de los químicos herramientas para resolver por la fuerza sus problemas, ya habían desarrollado modelos para incorporar la mecánica cuántica de forma relativamente sencilla a su arsenal y en esos modelos los protagonistas eran un tipo especial de funciones de onda, los orbitales. Los orbitales son funciones de onda de una sola partícula y por tanto mucho más sencillas de calcular e interpretar que las de los sistemas complejos. A cambio, no dan cuenta de todas las complejidades de una molécula, por ejemplo de las interacciones entre sus electrones. La química es una ciencia capaz de utilizar simultáneamente varios modelos diferentes e incluso contradictorios para cubrir su territorio y eso es lo que hizo, de más de una manera, con los orbitales, de origen cuántico, la teoría estructural clásica y los modelos semiclásicos del enlace a través de pares de electrones localizados. El resultado es un modelo híbrido y difícil de definir, pero eficaz, versátil, intuitivo, visualizable... y limitado, que se puede introducir incluso en niveles preuniversitarios. A pesar de eso, la enseñanza de los modelos cuánticos sigue siendo problemática. A los alumnos les resultan complicados y muchos expertos creen además que los confunden y mezclan con los clásicos. Se trata, pues de un problema abierto. Esta tesis tiene el propósito de dilucidar el papel de los orbitales en la educación química analizando casos de uso de sus representaciones gráficas, que son muy importantes en toda la química y aún más en estos modelos, que tienen un fuerte componente visual, analógico y metafórico. Los resultados de los análisis muestran una notable coherencia de uso de las imágenes de orbitales en enseñanza e investigación: En química los orbitales no son únicamente funciones matemáticas que se extienden por toda la molécula, sino también contenedores de electrones localizados que interaccionan por proximidad con transferencia de electrones Muchas veces estos modelos intuitivos se utilizan después de los cálculos cuánticos para interpretar los resultados en términos próximos a la química estructural. Aquí está la principal diferencia con los usos educativos: en la enseñanza, especialmente la introductoria, el modelo intuitivo tiende a ser el único que se usa.