4 resultados para CRITICAL SLOWING-DOWN

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decades accumulated clinical evidence has proven that intra-operative radiation therapy (IORT) is a very valuable technique. In spite of that, planning technology has not evolved since its conception, being outdated in comparison to current state of the art in other radiotherapy techniques and therefore slowing down the adoption of IORT. RADIANCE is an IORT planning system, CE and FDA certified, developed by a consortium of companies, hospitals and universities to overcome such technological backwardness. RADIANCE provides all basic radiotherapy planning tools which are specifically adapted to IORT. These include, but are not limited to image visualization, contouring, dose calculation algorithms-Pencil Beam (PB) and Monte Carlo (MC), DVH calculation and reporting. Other new tools, such as surgical simulation tools have been developed to deal with specific conditions of the technique. Planning with preoperative images (preplanning) has been evaluated and the validity of the system being proven in terms of documentation, treatment preparation, learning as well as improvement of surgeons/radiation oncologists (ROs) communication process. Preliminary studies on Navigation systems envisage benefits on how the specialist to accurately/safely apply the pre-plan into the treatment, updating the plan as needed. Improvements on the usability of this kind of systems and workflow are needed to make them more practical. Preliminary studies on Intraoperative imaging could provide an improved anatomy for the dose computation, comparing it with the previous pre-plan, although not all devices in the market provide good characteristics to do so. DICOM.RT standard, for radiotherapy information exchange, has been updated to cover IORT particularities and enabling the possibility of dose summation with external radiotherapy. The effect of this planning technology on the global risk of the IORT technique has been assessed and documented as part of a failure mode and effect analysis (FMEA). Having these technological innovations and their clinical evaluation (including risk analysis) we consider that RADIANCE is a very valuable tool to the specialist covering the demands from professional societies (AAPM, ICRU, EURATOM) for current radiotherapy procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the 3D Disordered Potts Model with p = 5 and p = 6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower p values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.