2 resultados para CONVECTIVE CLOUDS

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La consolidación de las grandes infraestructuras para la Computación Distribuida ha resultado en una plataforma de Computación de Alta Productividad que está lista para grandes cargas de trabajo. Los mejores exponentes de este proceso son las federaciones grid actuales. Por otro lado, la Computación Cloud promete ser más flexible, utilizable, disponible y simple que la Computación Grid, cubriendo además muchas más necesidades computacionales que las requeridas para llevar a cabo cálculos distribuidos. En cualquier caso, debido al dinamismo y la heterogeneidad presente en grids y clouds, encontrar la asignación ideal de las tareas computacionales en los recursos disponibles es, por definición un problema NP-completo, y sólo se pueden encontrar soluciones subóptimas para estos entornos. Sin embargo, la caracterización de estos recursos en ambos tipos de infraestructuras es deficitaria. Los sistemas de información disponibles no proporcionan datos fiables sobre el estado de los recursos, lo cual no permite la planificación avanzada que necesitan los diferentes tipos de aplicaciones distribuidas. Durante la última década esta cuestión no ha sido resuelta para la Computación Grid y las infraestructuras cloud establecidas recientemente presentan el mismo problema. En este marco, los planificadores (brokers) sólo pueden mejorar la productividad de las ejecuciones largas, pero no proporcionan ninguna estimación de su duración. La planificación compleja ha sido abordada tradicionalmente por otras herramientas como los gestores de flujos de trabajo, los auto-planificadores o los sistemas de gestión de producción pertenecientes a ciertas comunidades de investigación. Sin embargo, el bajo rendimiento obtenido con estos mecanismos de asignación anticipada (early-binding) es notorio. Además, la diversidad en los proveedores cloud, la falta de soporte de herramientas de planificación y de interfaces de programación estandarizadas para distribuir la carga de trabajo, dificultan la portabilidad masiva de aplicaciones legadas a los entornos cloud...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.