3 resultados para CONFIDENCE-INTERVALS
em Universidade Complutense de Madrid
Resumo:
Hoekstra et al. (Psychonomic Bulletin & Review, 2014, 21:1157–1164) surveyed the interpretation of confidence intervals (CIs) by first-year students, master students, and researchers with six items expressing misinterpretations of CIs. They asked respondents to answer all items, computed the number of items endorsed, and concluded that misinterpretation of CIs is robust across groups. Their design may have produced this outcome artifactually for reasons that we describe. This paper discusses first the two interpretations of CIs and, hence, why misinterpretation cannot be inferred from endorsement of some of the items. Next, a re-analysis of Hoekstra et al.’s data reveals some puzzling differences between first-year and master students that demand further investigation. For that purpose, we designed a replication study with an extended questionnaire including two additional items that express correct interpretations of CIs (to compare endorsement of correct vs. nominally incorrect interpretations) and we asked master students to indicate which items they would have omitted had they had the option (to distinguish deliberate from uninformed endorsement caused by the forced-response format). Results showed that incognizant first-year students endorsed correct and nominally incorrect items identically, revealing that the two item types are not differentially attractive superficially; in contrast, master students were distinctively more prone to endorsing correct items when their uninformed responses were removed, although they admitted to nescience more often that might have been expected. Implications for teaching practices are discussed.
Resumo:
Two-sided asymptotic confidence intervals for an unknown proportion p have been the subject of a great deal of literature. Surprisingly, there are very few papers devoted, like this article, to the case of one tail, despite its great importance in practice and the fact that its behavior is usually different from that of the case with two tails. This paper evaluates 47 methods and concludes that (1) the optimal method is the classic Wilson method with a correction for continuity and (2) a simpler option, almost as good as the first, is the new adjusted Wald method (Wald's classic method applied to the data increased in the values proposed by Borkowf: adding a single imaginary failure or success).
Resumo:
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.