2 resultados para CHEVERUDS CONJECTURE
em Universidade Complutense de Madrid
Resumo:
We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.
Resumo:
The transverse momentum dependent parton distribution/fragmentation functions (TMDs) are essential in the factorization of a number of processes like Drell-Yan scattering, vector boson production, semi-inclusive deep inelastic scattering, etc. We provide a comprehensive study of unpolarized TMDs at next-to-next-to-leading order, which includes an explicit calculation of these TMDs and an extraction of their matching coefficients onto their integrated analogues, for all flavor combinations. The obtained matching coefficients are important for any kind of phenomenology involving TMDs. In the present study each individual TMD is calculated without any reference to a specific process. We recover the known results for parton distribution functions and provide new results for the fragmentation functions. The results for the gluon transverse momentum dependent fragmentation functions are presented for the first time at one and two loops. We also discuss the structure of singularities of TMD operators and TMD matrix elements, crossing relations between TMD parton distribution functions and TMD fragmentation functions, and renormalization group equations. In addition, we consider the behavior of the matching coefficients at threshold and make a conjecture on their structure to all orders in perturbation theory.