5 resultados para Células espermatogenéticas
em Universidade Complutense de Madrid
Resumo:
La anemia de Fanconi es una enfermedad hereditaria de baja prevalencia, descrita por primera vez por el pediatra Guido Fanconi en 1927. Esta enfermedad se produce como consecuencia de mutaciones en cualquiera de los 19 genes de Fanconi descritos hasta la actualidad, y que participan en la ruta de Fanconi/BRCA. Esta ruta se encarga de la reparación de enlaces intercatenarios del ADN y de coordinar los distintos mecanismos de reparación de las dobles roturas en el ADN. La anemia de Fanconi está caracterizada por generar inestabilidad genómica, lo que da lugar a anomalías esqueléticas y predisposición al cáncer, si bien la principal causa de muerte de pacientes pediátricos es el fallo de médula ósea. Uno de los tratamientos alternativos al trasplante alogénico de progenitores hematopoyéticos de pacientes con anemia de Fanconi se basa en la reinfusión de células madre hematopoyéticas autólogas, tras su corrección con vectores lentivirales. Para limitar al máximo los riesgos de este tipo de terapias se están desarrollando nuevas tecnologías de edición génica basadas en la inserción dirigida de los genes terapéuticos. Esta nueva aproximación se fundamenta en la generación de dobles roturas en regiones específicas del genoma, cuya reparación por recombinación homóloga facilitaría la entrada de los genes terapéuticos aportados por ADNs donadores externos con homología por dicha región. En este trabajo se ha desarrollado una aproximación de edición génica en un nuevo “sitio seguro” del genoma denominado SH6. Para ello se ha trabajado con la línea celular HEK-293H, así como también con progenitores hematopoyéticos humanos purificados en base a la expresión del marcador CD34. Para su desarrollo se han utilizado nucleasas de edición, tales como meganucleasas y TALEN, en combinación con matrices donadoras portadoras del gen marcador EGFP (GM) o del gen terapéutico FANCA (TM). En todos los casos los genes marcadores y terapéuticos estaban regulados por el promotor EF1α, y flanqueados por dos brazos de homología para el sitio SH6. Estos plásmidos han servido como molde para realizar la terapia génica de edición en el sitio seguro SH6...
Resumo:
Los dispositivos opto-electrónicos, tales como las células solares, las pantallas planas y los diodos LED (del inglés light emitting diodes), necesitan contactos eléctricos en la cara frontal por la que entra o sale la luz del dispositivo. Estos contactos causan pérdidas por reflexión y absorción de luz (sombra) y por resistencia eléctrica. En una primera aproximación estas pérdidas son contrapuestas, lo que mejora la sombra empeora la resistencia y viceversa. Hasta ahora esto se ha entendido como un compromiso inevitable que limita la eficiencia de conversión energética de los dispositivos opto-electrónicos: disminuir las pérdidas por resistencia eléctrica implica necesariamente aumentar las pérdidas ópticas por sombra. Esta tesis se ha encaminado a tratar de superar esta dificultad a través de la nanoestructuración de la malla de contacto frontal, con especial énfasis en el caso de las células solares de concentración. El objetivo es poder reducir simultáneamente las pérdidas por sombreado y resistencia en serie de la malla. Hemos encontrado, en base a experimentos, teoría y simulaciones, que para tamaños de linea pequeños, en el umbral del régimen de Rayleigh, pero no lo suficientemente pequeños como para que se den las resonancias plasmónicas más intensas (de tipo dipolar), los contactos hacen menos sombra de la que corresponde a su área geométrica. Se puede decir que los contactos se vuelven parcialmente invisibles. En una primera parte de introducción se ha presentado la influencia de la malla en las pérdidas por resistencia en serie producidas en la célula. Se ha analizado el peso de las distintas variables y se ha escogido la reducción del espaciado entre líneas como alternativa a desarrollar. Para no afectar a otras variables, se ha reducido acordemente la anchura de línea manteniendo el factor de sombra geométrico de las células estado del arte. Se ha calculado que para un caso ideal la ganancia puede ser de un 4% absoluto para mallas con líneas de anchura 400-600 nm distribuidas en periodos de 10-20 μm. Se ha visto como otros efectos eléctricos apuntan también a ese rango como óptimo...
Resumo:
La enfermedad cardiovascular sigue siendo la principal causa de morbilidad y mortalidad a nivel mundial en países desarrollados, fundamentalmente en pacientes con DM tipo 2, en algunas poblaciones puede representar el 50% o más de las muertes por diabetes (Joseph and Golden, 2014). Esto se debe en gran medida a factores ya conocidos como la predisposición genética, la aterogénesis acelerada, la inflamación crónica, la isquemia silente y la presencia de patologías co-existentes como la hipertensión o la dislipidemia. La diabetes es sin duda alguna, uno de los problemas de salud más graves del siglo XXI y actualmente en España, la prevalencia nacional es de 10,83% (FDI 2013). Las células progenitoras endoteliales juegan un papel clave en los procesos de reparación endotelial. En los pacientes con DM tipo 2 y enfermedad cardiovascular, se sabe que la funcionalidad de las EPCs es deficiente, aunque el mecanismo exacto de disfunción aún es incierto. Además, está bien descrito que en la evolución natural de los pacientes con DM tipo 2 presentan un mayor número de complicaciones y con mayor frecuencia estos pacientes estarán abocados a procedimientos de revascularización. Múltiples estudios (Sidhu and Boden, 2015; Verma et al., 2013) que han señalado la importancia de una adecuada terapia de reparación endotelial (terapia con EPCs), que ayudaría a disminuir las alteraciones en los procesos de reendotelización en los pacientes con DM tipo 2 y enfermedad cardiovascular, y por consiguiente disminuiría la aparición de la enfermedad cardiovascular (ECV)...
Resumo:
Las recombinasas específicas de secuencia son herramientas muy valiosas en la generación de modificaciones génicas condicionales. Estos sistemas permiten controlar la recombinación de forma específica de tejido, temporalmente, o ambas, y sortean diversas limitaciones de los sistemas de knockout (KO) convencionales, como la letalidad embrionaria o la generación de mecanismos compensatorios. Actualmente los sistemas Cre/loxP y Flp/FRT son los más empleados tanto en modelos animales como vegetales. La necesidad de realizar modificaciones más complejas en un mismo organismo hace que sea primordial caracterizar otras recombinasas que complementen a las existentes. La b recombinasa (b-rec) es originaria del plásmido pSM19035 de Streptococcus pyogenes. A diferencia de Cre y Flp, que en ausencia de factores adicionales catalizan la integración en un nuevo sustrato, la b-rec necesita un sustrato superenrollado y un cofactor de la reacción, una proteína asociada a la cromatina (como la procariota Hbsu o la eucariota HMG1). Se ha demostrado que la b-rec cataliza de forma específicamente intramolecular (resolución o inversión) la recombinación en células eucariotas, tanto de sustratos episomales como integrados en la cromatina, lo que indica que el entorno eucariota es capaz de proveer del cofactor y del superenrollamiento necesarios para que la b-rec realice su función. En este trabajo hemos determinado que la tasa de recombinación mediada por la b-rec no se ve afectada en absoluto por la deficiencia en el cofactor HMG1, alcanzando el mismo valor de recombinación en MEF KO en HMG1 que en wt. Este y otros datos confirman que en el entorno eucariota hay otras proteínas accesorias que pueden actuar de cofactores y sugiere que estas reacciones pueden ocurrir en la mayor parte de tejidos y tipos celulares. Para estudiar detalladamente el potencial de la b-rec en eucariotas desarrollamos un sistema de RAGE (activación génica mediada por recombinación) dependiente de la actividad b-rec; este sistema ha resultado funcional tanto en sustratos episomales como en sustratos integrados en la cromatina. También hemos generado un vector retroviral que porta la proteína de fusión b-Egfp, permitiendo de forma rápida y eficiente la integración y expresión funcional de nuestra proteína...