6 resultados para Bullet ants

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use deep, five band (100–500 μm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_FIR, of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFR_FIR = 144±14 M_⨀ yr^-1. On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFR_FIR (21 galaxies; 207± 9 M_⨀ yr^-1). SFRs extrapolated from 24 μm flux via recent templates (SFR_24 µm) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR_24 µm underestimates SFR_FIR due to a significant excess in observed S_100/S_24 (rest frame S_75/S_18) compared to templates of the same FIR luminosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using far-infrared imaging from the "Herschel Lensing Survey," we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z ~ 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources (~90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T_dust ~ 30 K). Several sub-luminous infrared galaxy (LIRG; L_IR < 10^11 L_☉) Bullet Cluster members are much warmer (T_dust > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these "warm dust" galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. "Warm dust" galaxies are, however, statistically rarer in field samples (>3σ), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M_* < 10^10 M_☉). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a "warm dust" galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ~40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e. g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel'dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present preliminary results about the detection of high redshift (U)LIRGs in the Bullet cluster field by the PACS and SPIRE instruments within the Herschel Lensing Survey (HLS) Program. We describe in detail a photometric procedure designed to recover robust fluxes and deblend faint Herschel sources near the confusion noise. The method is based on the use of the positions of Spitzer/MIPS 24 μm sources as priors. Our catalogs are able to reliably (5σ) recover galaxies with fluxes above 6 and 10 mJy in the PACS 100 and 160 μm channels, respectively, and 12 to 18 mJy in the SPIRE bands. We also obtain spectral energy distributions covering the optical through the far-infrared/millimeter spectral ranges of all the Herschel detected sources, and analyze them to obtain independent estimations of the photometric redshift based on either stellar population or dust emission models. We exemplify the potential of the combined use of Spitzer position priors plus independent optical and IR photometric redshifts to robustly assign optical/NIR counterparts to the sources detected by Herschel and other (sub-)mm instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sunyaev-Zel'dovich (SZ) effect is a spectral distortion of the cosmic microwave background as observed through the hot plasma in galaxy clusters. This distortion is a decrement in the CMB intensity for λ > 1.3 mm, an increment at shorter wavelengths, and small again by λ ~ 250 μm. As part of the Herschel Lensing Survey (HLS) we have mapped 1E0657–56 (the Bullet cluster) with SPIRE with bands centered at 250, 350 and 500 μm and have detected the SZ effect at the two longest wavelengths. The measured SZ effect increment central intensities are ΔI_0 = 0.097 ± 0.019 MJy sr^-1 at 350 μm and ΔI_0 = 0.268 ± 0.031 MJy sr^-1 at 500 μm, consistent with the SZ effect spectrum derived from previous measurements at 2 mm. No other diffuse emission is detected. The presence of the finite temperature SZ effect correction is preferred by the SPIRE data at a significance of 2.1σ, opening the possibility that the relativistic SZ effect correction can be constrained by SPIRE in a sample of clusters. The results presented here have important ramifications for both sub-mm measurements of galaxy clusters and blank field surveys with SPIRE.