4 resultados para Bayesian adaptive design
em Universidade Complutense de Madrid
Resumo:
Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.
Resumo:
Threshold estimation with sequential procedures is justifiable on the surmise that the index used in the so-called dynamic stopping rule has diagnostic value for identifying when an accurate estimate has been obtained. The performance of five types of Bayesian sequential procedure was compared here to that of an analogous fixed-length procedure. Indices for use in sequential procedures were: (1) the width of the Bayesian probability interval, (2) the posterior standard deviation, (3) the absolute change, (4) the average change, and (5) the number of sign fluctuations. A simulation study was carried out to evaluate which index renders estimates with less bias and smaller standard error at lower cost (i.e. lower average number of trials to completion), in both yes–no and two-alternative forced-choice (2AFC) tasks. We also considered the effect of the form and parameters of the psychometric function and its similarity with themodel function assumed in the procedure. Our results show that sequential procedures do not outperform fixed-length procedures in yes–no tasks. However, in 2AFC tasks, sequential procedures not based on sign fluctuations all yield minimally better estimates than fixed-length procedures, although most of the improvement occurs with short runs that render undependable estimates and the differences vanish when the procedures run for a number of trials (around 70) that ensures dependability. Thus, none of the indices considered here (some of which are widespread) has the diagnostic value that would justify its use. In addition, difficulties of implementation make sequential procedures unfit as alternatives to fixed-length procedures.
Resumo:
Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter values larger than their counterparts in the psychometric function, (c) stimulus placement at the prior mean, and (d) estimates defined as the posterior mean. Unbiasedness arises in only 10 trials, and 20 trials ensure constant standard errors. The standard error of the estimates equals 0.617 times the inverse of the square root of the number of trials. Other variants yielded bias and larger standard errors.
Resumo:
Leishmaniasis, caused by Leishmania infantum, is a vector-borne zoonotic disease that is endemic to the Mediterranean basin. The potential of rabbits and hares to serve as competent reservoirs for the disease has recently been demonstrated, although assessment of the importance of their role on disease dynamics is hampered by the absence of quantitative knowledge on the accuracy of diagnostic techniques in these species. A Bayesian latent-class model was used here to estimate the sensitivity and specificity of the Immuno-fluorescence antibody test (IFAT) in serum and a Leishmania-nested PCR (Ln-PCR) in skin for samples collected from 217 rabbits and 70 hares from two different populations in the region of Madrid, Spain. A two-population model, assuming conditional independence between test results and incorporating prior information on the performance of the tests in other animal species obtained from the literature, was used. Two alternative cut-off values were assumed for the interpretation of the IFAT results: 1/50 for conservative and 1/25 for sensitive interpretation. Results suggest that sensitivity and specificity of the IFAT were around 70–80%, whereas the Ln-PCR was highly specific (96%) but had a limited sensitivity (28.9% applying the conservative interpretation and 21.3% with the sensitive one). Prevalence was higher in the rabbit population (50.5% and 72.6%, for the conservative and sensitive interpretation, respectively) than in hares (6.7% and 13.2%). Our results demonstrate that the IFAT may be a useful screening tool for diagnosis of leishmaniasis in rabbits and hares. These results will help to design and implement surveillance programmes in wild species, with the ultimate objective of early detecting and preventing incursions of the disease into domestic and human populations.