3 resultados para Bayesian Population Modelling
em Universidade Complutense de Madrid
Resumo:
We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).
Resumo:
Leishmaniasis, caused by Leishmania infantum, is a vector-borne zoonotic disease that is endemic to the Mediterranean basin. The potential of rabbits and hares to serve as competent reservoirs for the disease has recently been demonstrated, although assessment of the importance of their role on disease dynamics is hampered by the absence of quantitative knowledge on the accuracy of diagnostic techniques in these species. A Bayesian latent-class model was used here to estimate the sensitivity and specificity of the Immuno-fluorescence antibody test (IFAT) in serum and a Leishmania-nested PCR (Ln-PCR) in skin for samples collected from 217 rabbits and 70 hares from two different populations in the region of Madrid, Spain. A two-population model, assuming conditional independence between test results and incorporating prior information on the performance of the tests in other animal species obtained from the literature, was used. Two alternative cut-off values were assumed for the interpretation of the IFAT results: 1/50 for conservative and 1/25 for sensitive interpretation. Results suggest that sensitivity and specificity of the IFAT were around 70–80%, whereas the Ln-PCR was highly specific (96%) but had a limited sensitivity (28.9% applying the conservative interpretation and 21.3% with the sensitive one). Prevalence was higher in the rabbit population (50.5% and 72.6%, for the conservative and sensitive interpretation, respectively) than in hares (6.7% and 13.2%). Our results demonstrate that the IFAT may be a useful screening tool for diagnosis of leishmaniasis in rabbits and hares. These results will help to design and implement surveillance programmes in wild species, with the ultimate objective of early detecting and preventing incursions of the disease into domestic and human populations.
Resumo:
Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ~ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, L_TIR/L_UV) and UV slope (β). We generalize the shape of the dust law with an empirical model, A_ λ,σ =E(B-V)k_ λ (λ / λ v)^ σ where k_λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62±0.05)log(E(B-V))+(0.26±0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z>3).