2 resultados para Average temperature
em Universidade Complutense de Madrid
Resumo:
The ECHAM-1 T21/LSG coupled ocean-atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian. 125 kyr BP). The results reflect thc expected surface temperature changes (with respect to the control run) due to the amplification (reduction) of the seasonal cycle of insolation in the Northern (Southern) Hemisphere. A number of simulated features agree with previous results from atmospheric GCM simulations e.g. intensified summer southwest monsoons) except in the Northern Hemisphere poleward of 30 degrees N. where dynamical feedback, in the North Atlantic and North Pacific increase zonal temperatures about 1 degrees C above what would be predicted from simple energy balance considerations. As this is the same area where most of the terrestrial geological data originate, this result suggests that previous estimates of Eemian global average temperature might have been biased by sample distribution. This conclusion is supported by the fact that the estimated global temperature increase of only 0.3 degrees C greater than the control run ha, been previously shown to be consistent a with CLIMAP sea surface temperature estimates. Although the Northern Hemisphere summer monsoon is intensified. globally averaged precipitation over land is within about 1% of the present, contravening some geological inferences bur not the deep-sea delta(13)C estimates of terrestrial carbon storage changes. Winter circulation changes in the northern Arabian Sea. driven by strong cooling on land, are as large as summer circulation changes that are the usual focus of interest, suggesting that interpreting variations in the Arabian Sea. sedimentary record solely in terms of the summer monsoon response could sometimes lead to errors. A small monsoonal response over northern South America suggests that interglacial paleotrends in this region were not just due to El Nino variations.
Resumo:
BACKGROUND Monitoring body temperature is essential in veterinary care as minor variations may indicate dysfunction. Rectal temperature is widely used as a proxy for body temperature, but measuring it requires special equipment, training or restraining, and it potentially stresses animals. Infrared thermography is an alternative that reduces handling stress, is safer for technicians and works well for untrained animals. This study analysed thermal reference points in five marine mammal species: bottlenose dolphin (Tursiops truncatus); beluga whale (Delphinapterus leucas); Patagonian sea lion (Otaria flavescens); harbour seal (Phoca vitulina); and Pacific walrus (Odobenus rosmarus divergens). RESULTS The thermogram analysis revealed that the internal blowhole mucosa temperature is the most reliable indicator of body temperature in cetaceans. The temperatures taken during voluntary breathing with a camera held perpendicularly were practically identical to the rectal temperature in bottlenose dolphins and were only 1 °C lower than the rectal temperature in beluga whales. In pinnipeds, eye temperature appears the best parameter for temperature control. In these animals, the average times required for temperatures to stabilise after hauling out, and the average steady-state temperature values, differed according to species: Patagonian sea lions, 10 min, 31.13 °C; harbour seals, 10 min, 32.27 °C; Pacific walruses, 5 min, 29.93 °C. CONCLUSIONS The best thermographic and most stable reference points for monitoring body temperature in marine mammals are open blowhole in cetaceans and eyes in pinnipeds.