2 resultados para Architecture of the Page
em Universidade Complutense de Madrid
Resumo:
The Upper Miocene stratigraphic succession of the Las Minas Basin, located at the external zone of the Betic Chain in SE Spain, preserves several examples of lake carbonate bench deposits. Excellent exposures of the carbonate benches allow detailed observation of the architecture of these sediments and provide new insights for the ‘‘steep-gradient bench margin–low energy’’ model proposed by Platt and Wright (1991). The lake carbonate benches developed in close association with fluvially dominated shallow deltas that exhibit typical Gilbert-type profiles. The delta sequences comprise bottomset prodelta marl facies, distal to proximal foreset facies, deposited mainly in a delta-front environment, and topset facies, the latter reflecting both subaqueous delta-front and subaerial delta-plain environments. The development of the carbonate benches was constrained by the convexupward morphology of the deltaic deposits, which led to the available accommodation space for the growth of the steep-gradient platforms. The benches display a progradational pattern characterized by sigmoid-oblique internal geometries and offlap upper boundary relationships, which suggests that the carbonate benches developed under slow though continuous lake-level rise. Both the dimensions of the benches and the dominant carbonate components (i.e., encrusted charophyte stems and calcified cyanobaterial remains), allow comparisons with the progradational marl benches recognized in modern temperate hardwater lakes. Accordingly, the case study presented here provides a good ancient sedimentary analog for low-energy lake carbonate benches. Moreover, the evolutionary trend inferred from the fossil example offers new insights into the depositional conditions of this type of sediment and allows recognition of the transitional pattern from bench to ramp carbonate lake margins.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.