3 resultados para Antenna Geometry

em Universidade Complutense de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be the fundamental group of the complement of the torus knot of type (m, n). It has a presentation G = . We find a geometric description of the character variety X(G) of characters of representations of G into SL(3,ℂ), GL(3,ℂ) and PGL(3,ℂ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seebeck nanoantennas, which are based on the thermoelectric effect, have been proposed for electromagnetic energy harvesting and infrared detection. The responsivity and frequency dependence of three types of Seebeck nanoantennas is obtained by electromagnetic simulation for different materials. Results show that the square spiral antenna has the widest bandwidth and the highest induced current of the three analyzed geometries. However, the geometry that presented the highest temperature gradient was the bowtie antenna, which favors the thermoelectric effect in a Seebeck nanoantenna. The results also show that these types of devices can present a voltage responsivity as high as 36  μV/W36  μV/W for titanium–nickel dipoles resonant at far-infrared wavelengths.