4 resultados para Algoritmos computacionales

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo se propone dar solución a uno de los problemas principales surgido en el campo del análisis de imágenes hiperespectrales. En las últimas décadas este campo está siendo muy activo, por lo que es de vital importancia tratar su problema principal: mezcla espectral. Muchos algoritmos han tratado de solucionar este problema, pero que a través de este trabajo se propone una cadena nueva de desmezclado en paralelo, para ser acelerados bajo el paradigma de programación paralela de OpenCl. Este paradigma nos aporta el modelo de programación unificada para acelerar algoritmos en sistemas heterogéneos. Podemos dividir el proceso de desmezclado espectral en tres etapas. La primera tiene la tarea de encontrar el número de píxeles puros, llamaremos endmembers a los píxeles formados por una única firma espectral, utilizaremos el algoritmo conocido como Geometry-based Estimation of number of endmembers, GENE. La segunda etapa se encarga de identificar los píxel endmembers y extraerlos junto con todas sus bandas espectrales, para esta etapa se utilizará el algoritmo conocido por Simplex Growing Algorithm, SGA. En la última etapa se crean los mapas de abundancia para cada uno de los endmembers encontrados, de esta etapa será encargado el algoritmo conocido por, Sum-to-one Constrained Linear Spectral Unmixing, SCLSU. Las plataformas utilizadas en este proyecto han sido tres: CPU, Intel Xeon E5-2695 v3, GPU, NVidia GeForce GTX 980, Acelerador, Intel Xeon Phi 31S1P. La idea de este proyecto se basa en realizar un análisis exhaustivo de los resultados obtenidos en las diferentes plataformas, con el fin de evaluar cuál se ajusta mejor a nuestras necesidades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La verificación formal de un programa es la demostración de que este funciona de acuerdo a una descripción del comportamiento esperado en toda posible ejecución. La especificación de lo deseado puede utilizar técnicas diversas y entrar en mayor o menor detalle, pero para ganarse el título de formal esta ha de ser matemáticamente rigurosa. El estudio y ejercicio manual de alguna de esas técnicas forma parte del currículo común a los estudios de grado de la Facultad de Informática y del itinerario de Ciencias de la Computación de la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid, como es el caso de la verificación con pre- y postcondiciones o lógica de Hoare. En el presente trabajo se explora la automatización de estos métodos mediante el lenguaje y verificador Dafny, con el que se especifican y verifican algoritmos y estructuras de datos de diversa complejidad. Dafny es un lenguaje de programación diseñado para integrar la especificación y permitir la verificación automática de sus programas, con la ayuda del programador y de un demostrador de teoremas en la sombra. Dafny es un proyecto en desarrollo activo aunque suficientemente maduro, que genera programas ejecutables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El flujo óptico y la estimación de movimiento es área de conocimiento muy importante usado en otros campos del conocimiento como el de la seguridad o el de la bioinformática. En estos sectores, se demandan aplicaciones de flujo óptico que realicen actividades muy importantes con tiempos de ejecución lo más bajos posibles, llegando a tiempo real si es posible. Debido a la gran complejidad de cálculos que siguen a este tipo de algoritmos como se observará en la sección de resultados, la aceleración de estos es una parte vital para dar soporte y conseguir ese tiempo real tan buscado. Por lo que planteamos como objetivo para este TFG la aceleración de este tipo de algoritmos mediante diversos tipos de aceleradores usando OpenCL y de paso demostrar que OpenCL es una buena herramienta que permite códigos paralelizados con un gran Speedup a la par que funcionar en toda una diversa gama de dispositivos tan distintos como un GPU y una FPGA. Para lo anteriormente mencionado trataremos de desarrollar un código para cada algoritmo y optimizarlo de forma no especifica a una plataforma para posteriormente ejecutarlo sobre las diversas plataformas y medir tiempos y error para cada algoritmo. Para el desarrollo de este proyecto partimos de la teoría de dos algoritmos ya existentes: Lucas&Kanade monoescala y el Horn&Schunck. Además, usaremos estímulos para estos algoritmos muy aceptados por la comunidad como pueden ser el RubberWhale o los Grove, los cuales nos ayudarán a establecer la corrección de estos algoritmos y analizar su precisión, dando así un estudio referencia para saber cual escoger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cuando nos enfrentamos a problemas reales haciendo uso de recursos computacionales, hemos de tener en cuenta que el número de posibles soluciones candidatas a tener en cuenta puede llegar a ser tan inmenso que abordarlas mediante técnicas algorítmicas clásicas, en la mayoría de los casos, pueden llegar a convertirse en un problema en sí mismo debido al gran coste en recursos que pueden llegar a generar. En este contexto, aspectos como el tiempo utilizado en la búsqueda de una solución mediante algoritmos de búsqueda exhaustiva tales como fuerza bruta, vuelta atrás, ramificación y poda, etc., puede llegar a ser prohibitivo en la práctica. Ante este problema que se nos plantea, podemos hacer un estudio sobre otros métodos, tales como los metaheurísticos, que, aunque no siempre aseguran la optimalidad de las soluciones producidas; tienen un tiempo de ejecución mucho menor que los métodos exhaustivos. En el presente trabajo hemos seleccionado dos problemas NP-completos de entre los más famosos de la literatura y hemos realizado un estudio de ambos. Concretamente, los problemas seleccionados han sido el TSP (Traveling Salesman Problem) y el problema de la Mochila 0-1. Por otro lado, hemos llevado a cabo un estudio sobre distintas metaheurísticas para poder resolver los problemas mencionados. Entre estas metaheurísticas, hemos seleccionado cuatro: metaheurísticas evolutivas, metaheurísticas inspiradas en colonias de hormigas, metaheurísticas simulated annealing (enfriamiento simulado) y metaheurísticas GRASP (Greedy Randomized Adaptive Search Procedure). Después de esto, cada problema ha sido resuelto aplicando tanto algoritmos de búsqueda exhaustiva como metaheurísticas. Una vez adaptados los algoritmos a la resolución de los problemas concretos, hemos realizado un estudio experimental, donde se realizaron comparativas de rendimiento. Finalmente, todo este trabajo ha sido plasmado en el desarrollo de una aplicación software, la cual consta de dos partes: una que contiene la implementación los algoritmos adaptados para la resolución de los problemas y que son ofrecidos a modo de servicios web y otra parte donde se ha implementado un cliente web que puede consumir estos servicios y realizar una presentación más vistosa de la ejecución de los algoritmos y los resultados obtenidos. Esta arquitectura podrá servir como base para futuras ampliaciones de este estudio.