1 resultado para Algebraische Geometrie, Computer Algebra
em Universidade Complutense de Madrid
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (9)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (12)
- Applied Math and Science Education Repository - Washington - USA (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (21)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (36)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (16)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- CentAUR: Central Archive University of Reading - UK (112)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (11)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (37)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (20)
- Martin Luther Universitat Halle Wittenberg, Germany (9)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (18)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (4)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (97)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (15)
- Universidad Autónoma de Nuevo León, Mexico (7)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (18)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (19)
- Université de Lausanne, Switzerland (52)
- Université de Montréal, Canada (7)
- University of Michigan (42)
- University of Queensland eSpace - Australia (42)
- University of Southampton, United Kingdom (39)
Resumo:
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2(m)) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.