4 resultados para Algebraic ANRs
em Universidade Complutense de Madrid
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
This article studies generated scales having exactly three different step sizes within the language of algebraic combinatorics on words. These scales and their corresponding step-patterns are called non well formed. We prove that they can be naturally inserted in the Christoffel tree of well-formed words. Our primary focus in this study is on the left- and right-Lyndon factorization of these words. We will characterize the non-well-formed words for which both factorizations coincide. We say that these words satisfy the LR property and show that the LR property is satisfied exactly for half of the non-well-formed words. These are symmetrically distributed in the extended Christoffel tree. Moreover, we find a surprising connection between the LR property and the Christoffel duality. Finally, we prove that there are infinitely many Christoffel–Lyndon words among the set of non-well-formed words and thus there are infinitely many generated scales having as step-pattern a Christoffel–Lyndon word.
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.