5 resultados para APRENDIZAJE AUTOMÁTICO
em Universidade Complutense de Madrid
Resumo:
La cantidad de datos biológicos y médicos que se produce hoy en día es enorme, y se podría decir que el campo de las ciencias de la vida forma parte ya del club del Big Data. Estos datos contienen información crucial que pueden ayudar a comprender mejor los mecanismos moleculares en los sistemas biológicos. Este conocimiento es fundamental para el progreso en el diagnóstico y en el tratamiento de las enfermedades. La Bioinformática, junto con la Biología Computacional, son disciplinas que se encargan de organizar, analizar e interpretar los datos procedentes de la Biología Molecular. De hecho, la complejidad y la heterogeneidad de los problemas biológicos requieren de un continuo diseño, implementación y aplicación de nuevos métodos y algoritmos. La minería de datos biológicos es una tarea complicada debido a la naturaleza heterogénea y compleja de dichos datos, siendo éstos muy dependientes de detalles específicos experimentales. Esta tesis se basa en el estudio de un problema biomédico complejo: la menor probabilidad de desarrollar algunos tipos de cáncer en pacientes con ciertos trastornos del sistema nervioso central (SNC) u otros trastornos neurológicos, y viceversa. Denominamos a esta condición como comorbilidad inversa. Desde el punto de vista médico, entender mejor las conexiones e interacciones entre cáncer y trastornos neurológicos podría mejorar la calidad de vida y el efecto de la asistencia médica de millones de personas en todo el mundo. Aunque la comorbilidad inversa ha sido estudiada a nivel médico, a través de estudios epidemiológicos, no se ha investigado en profundidad a nivel molecular...
Resumo:
Este documento explica la creación, implementación y uso del proyecto de fin de grado, desarrollado dentro del grupo de investigación ISCAR (Ingeniería de Sistemas, Control, Automática y Robótica) de la Facultad de Informática de la Universidad Complutense. El proyecto consiste en la implementación de una aplicación capaz de clasificar texturas extraídas de distintas imágenes mediante técnicas de visión por computador. Dicha aplicación se divide en tres pilares fundamentales: interfaz gráfica de usuario, algoritmos de extracción de características texturales y aprendizaje supervisado mediante una máquina “SVM” (Support Vector Machine). Interfaz gráfica: proporciona al usuario una forma fácil de uso de la aplicación por medio de la visualización gráfica de una imagen con una serie de elementos de configuración para su posterior análisis. Una vez analizada, el usuario si así lo desea, podrá visualizar los resultados de manera intuitiva, así como guardar dichos resultados después de la ejecución de los algoritmos pertinentes. Algoritmos de análisis de texturas: Procede al cálculo de las configuraciones y las muestras provistas por el usuario en la interfaz gráfica como el cálculo de la matriz de co-ocurrencia y el cálculo de los vectores de características (homogeneidad, media, varianza, Entropía, etc…). SVM: Utiliza los vectores de características obtenidos en los cálculos estadísticos de texturas para realizar el proceso de aprendizaje de un clasificador SVM. La aplicación ha sido construida en JAVA haciendo uso de librerías como JNI_SVM-light-6.01, commons-math3-3.0 y WindowsBuilder, para la construcción de la ventana gráfica, cálculo de los métodos estadísticos y máquina de aprendizaje automático. Dicha aplicación se ha utilizado con el objetivo de identificar y clasificar el quiste de Baker mediante imágenes obtenidas por Resonancias Magnéticas de la rodilla.
Resumo:
El objetivo de este proyecto es desarrollar una aplicación multiplataforma que, dadas las preferencias de los clientes por las posibles características que se pueden dar a un producto, y dados los productos que vende la competencia, decida las características del producto a vender para que éste obtenga el mayor número de clientes, bien de manera inmediata, o bien a largo plazo. La solución óptima de este tipo de problemas es intratable, ya que no se pueden resolver en tiempo polinómico, por lo que nosotros utilizamos soluciones heurísticas, concretamente: algoritmos genéticos, algoritmos minimax, algoritmos de aprendizaje automático y algoritmos de interpolación. Además, realizamos un caso de estudio con datos reales obtenidos a través de una serie de encuestas utilizando una plataforma web, concretamente de la empresa Feebbo, que nos permitió obtener resultados sobre las preferencias de más de 500 encuestados. Las preguntas de las encuestas se centraron en un tipo de producto en particular, en nuestro caso teléfonos móviles.
Resumo:
La gran evolución a lo largo de este tiempo sobre dispositivos móviles y sus características, así como las vías de conexión de alta velocidad 3G/4G, han logrado dar un giro a los planteamientos económicos empresariales consiguiendo que se replanteen los costes de sus infraestructuras tradicionales, involucrando las nuevas tecnologías en su nueva estructura económica y consiguiendo invertir menos recursos humanos en el proceso de producción. Este proyecto propone una solución real para la empresa Madrileña Red de Gas. Mientras el proyecto de contadores inteligentes se termina de concretar y desarrollar, es necesario disponer de un método que automatice la lectura de los contadores analógicos mediante el procesamiento de una imagen digital a través de una aplicación informática que sea capaz de determinar el código de identificación del contador así como la lectura del consumo actual. Para la elaboración del método desarrollado se han utilizado conceptos propios de Visión por Computador y de Aprendizaje Automático, más específicamente tratamiento de imágenes y reconocimiento óptico de caracteres, mediante la aplicación de métodos en el ámbito de dichas disciplinas.
Resumo:
En la actualidad, existe un concepto que está cobrando especial relevancia, el cual es conocido como IoT (Internet of Things, Internet de las Cosas) [1]. En el IoT [2] se define la interconexión digital de objetos cotidianos con internet, esto significa que no sólo “los humanos” tenemos la capacidad de conectarnos a internet, sino que caminamos hacia una nueva era donde prácticamente cualquier cosa podría ser conectada a internet, desde un reloj (smartwatch), como tenemos en la actualidad, hasta una nevera, una persiana, una sartén, etc. En este proyecto se ha querido aplicar ciertas fases del IoT, para convertir una información ambiental poco sesgada, proporcionada por una pequeña estación meteorológica, en un valor adicional a la hora de tomar decisiones basadas en las variables ambientales, para determinar, según un proceso de aprendizaje automático, la sensación que una persona percibe en relación al tiempo meteorológico en un determinado momento. Para ello utilizamos una serie de sensores que se encargan de darnos la información ambiental necesaria (como la temperatura, humedad y presión atmosférica) una fuente de procesamiento como puede ser un micro-controlador, para después poder manejarla y procesarla en la nube, de forma remota, adquiriendo así el valor añadido que se espera en el IoT. Además, en este proyecto se aplican técnicas de Inteligencia Artificial para ayudar al usuario en esa toma de decisiones, mediante un proceso de entrenamiento previo, que permite obtener información relevante para aplicarla posteriormente en el contexto meteorológico mencionado. Para manejar todos estos conceptos y elementos, se hace uso de servicios Web, bases de datos, procesamiento y aprendizaje automático, integrando todos los servicios en una misma plataforma que facilite la comunicación de todos los elementos involucrados.