2 resultados para ANTICOAGULANT PATHWAYS

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present star formation histories (SFHs) for a sample of 104 massive (stellar mass M > 10^10 M_⊙) quiescent galaxies (MQGs) at z = 1.0–1.5 from the analysis of spectrophotometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) and HST/WFC3 G102 and G141 surveys of the GOODS-North field, jointly with broad-band observations from ultraviolet (UV) to far-infrared (far-IR). The sample is constructed on the basis of rest-frame UVJ colours and specific star formation rates (sSFRs = SFR/Mass). The spectral energy distributions (SEDs) of each galaxy are compared to models assuming a delayed exponentially declining SFH. A Monte Carlo algorithm characterizes the degeneracies, which we are able to break taking advantage of the SHARDS data resolution, by measuring indices such as MgUV and D4000. The population of MQGs shows a duality in their properties. The sample is dominated (85 per cent) by galaxies with young mass-weighted ages, t_M t_M < 2 Gyr, short star formation time-scales, 〈τ〉 ∼ 60–200 Myr, and masses log(M/M_⊙) ∼ 10.5. There is an older population (15 per cent) with t_M t_M = 2–4 Gyr, longer star formation time-scales, 〈τ〉∼ 400 Myr, and larger masses, log(M/M_⊙) ∼ 10.7. The SFHs of our MQGs are consistent with the slope and the location of the main sequence of star-forming galaxies at z > 1.0, when our galaxies were 0.5–1.0 Gyr old. According to these SFHs, all the MQGs experienced a luminous infrared galaxy phase that lasts for ∼500 Myr, and half of them an ultraluminous infrared galaxy phase for ∼100 Myr. We find that the MQG population is almost assembled at z ∼ 1, and continues evolving passively with few additions to the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To investigate the role of ERK1/2 and RhoA/ROCK intracellular pathways in the modification of corneal re-epithelialization when stimulated by the diadenosine polyphosphates Ap4A and Ap3A. Methods. In wounded confluent SIRC (Statens Seruminstitut rabbit cornea) cell monolayers and in the presence or absence of Ap4A or Ap3A 100 μM, a battery of P2 receptor antagonists and inhibitors of tyrosin kinases, MAPK, and cytoskeleton pathways (AG1478 100 μM, U0126 100 μM, Y27632 100 nM, and (−)-blebbistatin 10 μM; n = 8 each) were assayed. Also, the activation of ERK1/2 and ROCK-I was examined by Western blot assay after treatment with Ap4A and Ap3A (100 μM), with or without suramin, RB-2, U0126, and Y27632. The intracellular distribution of pERK and ROCK-I was examined in the presence of Ap4A or Ap3A (100 μM) with U0126 and Y27632 (100 nM). Results. In the presence of Ap4A, U0126, Y27632, AG1478, and (−)-blebbistatin, reduced the migration rate compared to the effect of Ap4A alone (P < 0.0001, P < 0.001, P < 0.01, and P < 0.1 versus Ap4A, respectively). In the presence of Ap3A 100 μM, U0126 and Y27632 accelerated the migration rate when compared with the effect of Ap3A alone, whereas AG1478 and (−)-blebbistatin (P < 0.0001 versus Ap3A) slowed the migration rate. Western blot assays demonstrated that both dinucleotides activated the ERK1/2 pathway but only Ap4A activated the ROCK-I pathway. The intracellular distribution of pERK1/2 and ROCK-I reflected cross-talk between these two pathways. Conclusions. The activation of the Ap4A/P2Y2 receptor, accelerates corneal epithelial cell migration during wound healing with the activation of MAPK and cytoskeleton pathways, whereas activation of the Ap3A/P2Y6 receptor signals only the MAPK pathway.