2 resultados para AFM
em Universidade Complutense de Madrid
Resumo:
The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange model with antiferromagnetic (AFM) superexchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase transition, only short-range ordering would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.
Resumo:
Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.