1 resultado para 3D printing,steel bars,calibration of design values,correlation
em Universidade Complutense de Madrid
Filtro por publicador
- Rhode Island School of Design (5)
- Aberdeen University (4)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (18)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (27)
- Aston University Research Archive (29)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (70)
- Brock University, Canada (11)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (68)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (8)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (48)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (24)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Open Access Repository of Indian Theses (1)
- Publishing Network for Geoscientific & Environmental Data (49)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (60)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Scielo España (1)
- Scielo Saúde Pública - SP (16)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (38)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (16)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (45)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (82)
- University of Queensland eSpace - Australia (40)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Current interest in measuring quality of life is generating interest in the construction of computerized adaptive tests (CATs) with Likert-type items. Calibration of an item bank for use in CAT requires collecting responses to a large number of candidate items. However, the number is usually too large to administer to each subject in the calibration sample. The concurrent anchor-item design solves this problem by splitting the items into separate subtests, with some common items across subtests; then administering each subtest to a different sample; and finally running estimation algorithms once on the aggregated data array, from which a substantial number of responses are then missing. Although the use of anchor-item designs is widespread, the consequences of several configuration decisions on the accuracy of parameter estimates have never been studied in the polytomous case. The present study addresses this question by simulation, comparing the outcomes of several alternatives on the configuration of the anchor-item design. The factors defining variants of the anchor-item design are (a) subtest size, (b) balance of common and unique items per subtest, (c) characteristics of the common items, and (d) criteria for the distribution of unique items across subtests. The results of this study indicate that maximizing accuracy in item parameter recovery requires subtests of the largest possible number of items and the smallest possible number of common items; the characteristics of the common items and the criterion for distribution of unique items do not affect accuracy.