3 resultados para 3-7-1
em Universidade Complutense de Madrid
Resumo:
With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa_(2)Cu_(3)O_(7) (YBCO) and the ferromagnet La_(2/3)Ca_(1/3)MnO_(3) (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO_(2) planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d_(3z^(2)−r^(2)) orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.
Resumo:
We have studied the main evolutionary paths among the galaxy types residing on the massive end of the Red Sequence and nearby locations on the Green Valley during the last ∼9 Gyr. The morphological and star formation properties of a sample of these galaxies at 0 . 3 < z < 1 .5 with stellar masses M_∗ > 5 × 10^10 M_⊙ have been analysed. We present direct observational evidence for the first time of the existence of two main evolutionary paths among the different red galaxy types since z ∼ 1 .5, which provide some clues on the nature of the processes that have governed the assembly of present-day massive quiescent galaxies. The results are in excellent agreement with the hierarchical evolutionary framework proposed in the Eliche-Moral et al. (2010) model. Data from SHARDS (one of the ESO/GTC Large Programmes approved in 2009A) will complement and improve the present findings, shedding some light into many of the still unsettled questions concerning the migration of galaxies from the Blue Cloud to the Red Sequence at z < 1 .5.
Resumo:
We use Hubble Space Telescope (HST) NICMOS continuum and Paα observations to study the near-infrared and star formation properties of a representative sample of 30 local (d ~ 35-75 Mpc) luminous infrared galaxies (LIRGs, infrared [8-1000 μm] luminosities of log L_IR = 11-11.9 L_☉). The data provide spatial resolutions of 25-50 pc and cover the central ~3.3-7.1 kpc regions of these galaxies. About half of the LIRGs show compact (~1-2 kpc) Paα emission with a high surface brightness in the form of nuclear emission, rings, and minispirals. The rest of the sample show Paα emission along the disk and the spiral arms extending over scales of 3-7 kpc and larger. About half of the sample contains H II regions with Hα luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24 μm and hydrogen recombination (extinction-corrected Paα) luminosity for these LIRGs, and the H II regions in the central part of M51. This relation holds over more than four decades in luminosity, suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of R. Kennicutt, we derive an empirical calibration of the SFR in terms of the monochromatic 24 μm luminosity that can be used for luminous, dusty galaxies.