3 resultados para 280401 Analysis of Algorithms and Complexity
em Universidade Complutense de Madrid
Resumo:
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
Resumo:
It is well known that that there is an intrinsic link between the financial and energy sectors, which can be analyzed through their spillover effects, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility in both spot and futures markets. Financial derivatives, which are not only highly representative of the underlying indices but can also be traded on both the spot and futures markets, include Exchange Traded Funds (ETFs), which is a tradable spot index whose aim is to replicate the return of an underlying benchmark index. When ETF futures are not available to examine spillover effects, “generated regressors” may be used to construct both Financial ETF futures and Energy ETF futures. The purpose of the paper is to investigate the covolatility spillovers within and across the US energy and financial sectors in both spot and futures markets, by using “generated regressors” and a multivariate conditional volatility model, namely Diagonal BEKK. The daily data used are from 1998/12/23 to 2016/4/22. The data set is analyzed in its entirety, and also subdivided into three subset time periods. The empirical results show there is a significant relationship between the Financial ETF and Energy ETF in the spot and futures markets. Therefore, financial and energy ETFs are suitable for constructing a financial portfolio from an optimal risk management perspective, and also for dynamic hedging purposes.
Resumo:
Finite-Differences Time-Domain (FDTD) algorithms are well established tools of computational electromagnetism. Because of their practical implementation as computer codes, they are affected by many numerical artefact and noise. In order to obtain better results we propose using Principal Component Analysis (PCA) based on multivariate statistical techniques. The PCA has been successfully used for the analysis of noise and spatial temporal structure in a sequence of images. It allows a straightforward discrimination between the numerical noise and the actual electromagnetic variables, and the quantitative estimation of their respective contributions. Besides, The GDTD results can be filtered to clean the effect of the noise. In this contribution we will show how the method can be applied to several FDTD simulations: the propagation of a pulse in vacuum, the analysis of two-dimensional photonic crystals. In this last case, PCA has revealed hidden electromagnetic structures related to actual modes of the photonic crystal.