2 resultados para 240402 Quantum Optics and Lasers
em Universidade Complutense de Madrid
Resumo:
In this contribution the line flow method is applied to an optimized secondary optics in a photovoltaic concentration system where the primary optics is already defined and characterized. This method is a particular application of photic field theory. This method uses the parameterization of a given primary optics, including actual tolerances of the manufacturing process. The design of the secondary optics is constrained by the selection of primary optics and maximizes the concentration at a previously specified collection area. The geometry of the secondary element is calculated by using a virtual source, which sends light in a first concentration step. This allows us to calculate the line flow for this specific case. This concept allows designing more compact and efficient secondary optics of photovoltaic systems.
Resumo:
SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.