5 resultados para 230112 Topology and Manifolds

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, dedicated to Prof. Lou Kauffman, we determine the Thurston’s geometry possesed by any Seifert fibered conemanifold structure in a Seifert manifold with orbit space (Formula presented.) and no more than three exceptional fibers, whose singular set, composed by fibers, has at most three components which can include exceptional or general fibers (the total number of exceptional and singular fibers is less than or equal to three). We also give the method to obtain the holonomy of that structure. We apply these results to three families of Seifert manifolds, namely, spherical, Nil manifolds and manifolds obtained by Dehn surgery on a torus knot (Formula presented.). As a consequence we generalize to all torus knots the results obtained in [Geometric conemanifolds structures on (Formula presented.), the result of (Formula presented.) surgery in the left-handed trefoil knot (Formula presented.), J. Knot Theory Ramifications 24(12) (2015), Article ID: 1550057, 38pp., doi: 10.1142/S0218216515500571] for the case of the left handle trefoil knot. We associate a plot to each torus knot for the different geometries, in the spirit of Thurston.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Esta tesis trata sobre aproximaciones de espacios métricos compactos. La aproximación y reconstrucción de espacios topológicos mediante otros más sencillos es un tema antigüo en topología geométrica. La idea es construir un espacio muy sencillo lo más parecido posible al espacio original. Como es muy difícil (o incluso no tiene sentido) intentar obtener una copia homeomorfa, el objetivo será encontrar un espacio que preserve algunas propriedades topológicas (algebraicas o no) como compacidad, conexión, axiomas de separación, tipo de homotopía, grupos de homotopía y homología, etc. Los primeros candidatos como espacios sencillos con propiedades del espacio original son los poliedros. Ver el artículo [45] para los resultados principales. En el germen de esta idea, destacamos los estudios de Alexandroff en los años 20, relacionando la dimensión del compacto métrico con la dimensión de ciertos poliedros a través de aplicaciones con imágenes o preimágenes controladas (en términos de distancias). En un contexto más moderno, la idea de aproximación puede ser realizada construyendo un complejo simplicial basado en el espacio original, como el complejo de Vietoris-Rips o el complejo de Cech y comparar su realización con él. En este sentido, tenemos el clásico lema del nervio [12, 21] el cual establece que para un recubrimiento por abiertos “suficientemente bueno" del espacio (es decir, un recubrimiento con miembros e intersecciones contractibles o vacías), el nervio del recubrimiento tiene el tipo de homotopía del espacio original. El problema es encontrar estos recubrimientos (si es que existen). Para variedades Riemannianas, existen algunos resultados en este sentido, utilizando los complejos de Vietoris-Rips. Hausmann demostró [35] que la realización del complejo de Vietoris-Rips de la variedad, para valores suficientemente bajos del parámetro, tiene el tipo de homotopía de dicha variedad. En [40], Latschev demostró una conjetura establecida por Hausmann: El tipo de homotopía de la variedad se puede recuperar utilizando un conjunto finito de puntos (suficientemente denso) para el complejo de Vietoris-Rips. Los resultados de Petersen [58], comparando la distancia Gromov-Hausdorff de los compactos métricos con su tipo de homotopía, son también interesantes. Aquí, los poliedros salen a relucir en las demostraciones, no en los resultados...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.