2 resultados para 2-DIMENSIONAL ELECTRON-SYSTEM
em Universidade Complutense de Madrid
Resumo:
We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-like oscillations associated with the appearance of a phase of delocalized states in the strong correlation regime. The amplitude of oscillations directly reflects the bandwidth of the phase and allows us to measure it. The oscillations reveal two main frequencies whose values are determined by the structure of the underlying potential in the vicinity of the wavepacket maximum.
Resumo:
We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.