2 resultados para 1-DIMENSIONAL CHAIN

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smooth projective surfaces fibered in conics over a smooth curve are investigated with respect to their k-th osculatory behavior. Due to the bound for the dimension of their osculating spaces they do not differ at all from a general surface for k = 2, while their structure plays a significant role for k >= 3. The dimension of the osculating space at any point is studied taking into account the possible existence of curves of low degree transverse to the fibers, and several examples are discussed to illustrate concretely the various situations arising in this analysis. As an application, a complete description of the osculatory behavior of Castelnuovo surfaces is given. The case k = 3 for del Pezzo surfaces is also discussed, completing the analysis done for k = 2 in a previous paper by the authors (2001). Moreover, for conic fibrations X subset of P-N whose k-th inflectional locus has the expected codimension, a precise description of this locus is provided in terms of Chern classes. In particular, for N = 8, it turns out that either X is hypo-osculating for k = 3, or its third inflectional locus is 1-dimensional