129 resultados para Astronomía.
Resumo:
We use a new stacking technique to obtain mean mid-IR and far-IR to far-UV flux ratios over the rest-frame near-UV, near-IR color-magnitude diagram. We employ COMBO-17 redshifts and COMBO-17 optical, GALEX far- and near-UV, and Spitzer IRAC and MIPS mid-IR photometry. This technique permits us to probe the infrared excess (IRX), the ratio of far-IR to far-UV luminosity, and the specific star formation rate (SSFR) and their coevolution over 2 orders of magnitude of stellar mass and over redshift 0.1 < z < 1.2. We find that the SSFR and the characteristic mass (Script M_0) above which the SSFR drops increase with redshift (downsizing). At any given epoch, the IRX is an increasing function of mass up to Script M_0. Above this mass the IRX falls, suggesting gas exhaustion. In a given mass bin below Script M_0, the IRX increases with time in a fashion consistent with enrichment. We interpret these trends using a simple model with a Schmidt-Kennicutt law and extinction that tracks gas density and enrichment. We find that the average IRX and SSFR follow a galaxy age parameter ξ, which is determined mainly by the galaxy mass and time since formation. We conclude that blue-sequence galaxies have properties which show simple, systematic trends with mass and time such as the steady buildup of heavy elements in the interstellar media of evolving galaxies and the exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX represents a tool for selecting galaxies at various stages of evolution.
Resumo:
We investigate the use of the rest-frame 24 μm luminosity as an indicator of the star formation rate (SFR) in galaxies with different metallicities by comparing it to the (extinction-corrected) Hα luminosity. We carry out this analysis in two steps: First, we compare the emission from H (II) regions in different galaxies with metallicities between 12 + and 8.9. We find that the 24 μm and the extinction-corrected Hα luminosities from individual H (II) log (O/H) = 8.1 regions follow the same correlation for all galaxies, independent of their metallicity. Second, the role of metallicity is explored further for the integrated luminosity in a sample of galaxies with metallicities in the range of 12 +. For this sample we compare the 24 μm and Hα luminosities integrated over the entire galaxies log (O/ H) = 7.2-9.1 and find a lack of the 24 μm emission for a given Hα luminosity for low-metallicity objects, likely reflecting a low dust content. These results suggest that the 24 μm luminosity is a good metallicity-independent tracer for the SFR in individual H (II) regions. On the other hand, metallicity has to be taken into account when using the 24 μm luminosity as a tracer for the SFR of entire galaxies.
Resumo:
Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample - source counts and 2D clustering - to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour-colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2-6 arcsec, similar to 15-20/sin i kpc at z~ 2, consistent with early bursts seen in merger simulations.
Resumo:
We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is 4.54 × 10^-2 MJy sr^–1 (DN/s)^–1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is 1.6% ± 0.6% lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of ~460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.
Resumo:
We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGNs. We study the multiwavelength properties of this sample and compare the AGNs selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the ≥2.5 σ detection level. Most of the remaining galaxies are likely to host AGNs that are heavily obscured in the X-ray. Because the power-law selection requires the AGNs to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 μm detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray-luminous AGNs, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2 : 1). Including all of the power-law galaxies suggests an obscured fraction of <81% (4 : 1).
Resumo:
We use Hubble Space Telescope (HST) NICMOS continuum and Paα observations to study the near-infrared and star formation properties of a representative sample of 30 local (d ~ 35-75 Mpc) luminous infrared galaxies (LIRGs, infrared [8-1000 μm] luminosities of log L_IR = 11-11.9 L_☉). The data provide spatial resolutions of 25-50 pc and cover the central ~3.3-7.1 kpc regions of these galaxies. About half of the LIRGs show compact (~1-2 kpc) Paα emission with a high surface brightness in the form of nuclear emission, rings, and minispirals. The rest of the sample show Paα emission along the disk and the spiral arms extending over scales of 3-7 kpc and larger. About half of the sample contains H II regions with Hα luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24 μm and hydrogen recombination (extinction-corrected Paα) luminosity for these LIRGs, and the H II regions in the central part of M51. This relation holds over more than four decades in luminosity, suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of R. Kennicutt, we derive an empirical calibration of the SFR in terms of the monochromatic 24 μm luminosity that can be used for luminous, dusty galaxies.
Resumo:
We present a complete census of all Herschel-detected sources within the six massive lensing clusters of the HST Frontier Fields (HFF). We provide a robust legacy catalogue of 263 sources with Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey and PEP/HerMES Key Programmes. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying counterparts to gain source redshifts. For each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of the magnified population, including more than 20 background sub-LIRGs unreachable by Herschel without the assistance gravitational lensing.
Resumo:
Aims. Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (z< 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the effect of the environment on GRB formation. Methods. We studied host galaxy spectra of the Swift/BAT6 complete sample of 14 z< 1 bright LGRBs. We used the detected nebular emission lines to measure the dust extinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M_*. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M_* relations) are compared to samples of field star-forming galaxies. Results. We find that LGRB hosts at z< 1 have on average lower SFRs than if they were direct star formation tracers. By directly comparing metallicity distributions of LGRB hosts and star-forming galaxies, we find a good match between the two populations up to 12 +log (O/H)~8.4−8.5, after which the paucity of metal-rich LGRB hosts becomes apparent. The LGRB host galaxies of our complete sample are consistent with the mass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 z< 1 sample with respect to that of a field star-forming population. Given that the SFRs are low on average, the latter is ascribed to low stellar masses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies.
Resumo:
Context. The young associations offer us one of the best opportunities to study the properties of young stellar and substellar objects and to directly image planets thanks to their proximity (<200 pc) and age (≈5−150 Myr). However, many previous works have been limited to identifying the brighter, more active members (≈1 M_⊙) owing to photometric survey sensitivities limiting the detections of lower mass objects. Aims. We search the field of view of 542 previously identified members of the young associations to identify wide or extremely wide (1000−100 000 au in physical separation) companions. Methods. We combined 2MASS near-infrared photometry (J, H, K) with proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the field of view of known members. We collated further photometry and spectroscopy from the literature and conducted our own high-resolution spectroscopic observations for a subsample of candidate members. This complementary information allowed us to assess the efficiency of our method. Results. We identified 84 targets (45: 0.2−1.3 M_⊙, 17: 0.08−0.2 M_⊙, 22: <0.08 M_⊙) in our analysis, ten of which have been identified from spectroscopic analysis in previous young association works. For 33 of these 84, we were able to further assess their membership using a variety of properties (X-ray emission, UV excess, Hα, lithium and K I equivalent widths, radial velocities, and CaH indices). We derive a success rate of 76–88% for this technique based on the consistency of these properties. Conclusions. Once confirmed, the targets identified in this work would significantly improve our knowledge of the lower mass end of the young associations. Additionally, these targets would make an ideal new sample for the identification and study of planets around nearby young stars. Given the predicted substellar mass of the majority of these new candidate members and their proximity, high-contrast imaging techniques would facilitate the search for new low-mass planets.
Resumo:
The Spanish Space Weather Service SeNMEs, www.senores.es, is a portal created by the SRG-SW of the Universidad de Alcala, Spain, to meet societal needs of near real-time space weather services. This webpage-portal is divided in different sections to fulfill users needs about space weather effects: radio blackouts, solar energetic particle events, geomagnetic storms and presence of geomagnetically induced currents. In less than one year of activity, this service has released a daily report concerning the solar current status and interplanetary medium, informing about the chances of a solar perturbation to hit the Earth's environment. There are also two different forecasting tools for geomagnetic storms, and a daily ionospheric map. These tools allow us to nowcast a variety of solar eruptive events and forecast geomagnetic storms and their recovery, including a new local geomagnetic index, LDin, along with some specific new scaling. In this paper we also include a case study analysed by SeNMEs. Using different high resolution and cadence data from space-borne solar telescopes SDO, SOHO and GOES, along with ionospheric and geomagnetic data, we describe the Sun-Earth feature chain for the event.
Resumo:
This paper aims to provide aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([O III] λ5007/Hβ)/([N II] λ6583/Hα) (O3N2) and log[N II] lambda 6583/Hα (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star-forming galaxies. We compute the median growth curves of Hα, Hα/Hβ, O3N2, and N-2 up to 2.5R(50) and 1.5 disk R-eff. These distances cover most of the optical spatial extent of the CALIFA galaxies. The growth curves simulate the effect of observing galaxies through apertures of varying radii. We split these growth curves by morphological types and stellar masses to check if there is any dependence on these properties. The median growth curve of the Hα flux shows a monotonous increase with radius with no strong dependence on galaxy inclination, morphological type, and stellar mass. The median growth curve of the Hα/HβH ratio monotonically decreases from the center toward larger radii, showing for small apertures a maximum value of ≈10% larger than the integrated one. It does not show any dependence on inclination, morphological type, and stellar mass. The median growth curve of N-2 shows a similar behavior, decreasing from the center toward larger radii. No strong dependence is seen on the inclination, morphological type, and stellar mass. Finally, the median growth curve of O3N2 increases monotonically with radius, and it does not show dependence on the inclination. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02 ≤ z ≤ 0.3 shows that the average difference between fiber-based and aperture-corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ≈11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g., below 0.5 R_eff) given the high dispersion shown around the median growth curves. Thus, the application of these median aperture corrections to derive abundances for individual galaxies is not recommended when their fluxes come from radii much smaller than either R_50 or R_eff.
Resumo:
Según el modelo cosmológico medieval, heredero directo del sistema de representación cosmológica del Mundo Antiguo, el Universo era esférico, y en su centro, inmóvil, estaba situada la Tierra. Ésta se encontraba rodeada por las esferas, “orbes”, de los siete planetas1, quedando esta estructura cerrada por la octava esfera o esfera de las estrellas fijas, en la que se disponían las constelaciones. Más allá se encontraba el primun mobile que ponía en marcha la maquinaría celeste, siendo identificado en el mundo cristiano con Dios. La esfera de las estrellas fijas se convirtió en un motivo iconográfico de gran interés a lo largo de toda la Edad Media, bien en su representación unitaria, como la octava esfera que cierra el sistema de representación cosmológica, o a través de la representación de sus constelaciones.
Resumo:
This paper analyses the influence of different atmospheric circulation indices on the multi-scalar drought variability across Europe by using the Standardized Precipitation Evapotranspiration Index (SPEI). The monthly circulation indices used in this study include the North Atlantic oscillation (NAO), the East Atlantic (EA), the Scandinavian (SCAN) and the East Atlantic-Western Russia (EA-WR) patterns, as well as the recently published Westerly Index (WI), defined as the persistence of westerly winds over the eastern north Atlantic region. The results indicate that European drought variability is better explained by the station-based NAO index and the WI than by any other combination of circulation indices. In northern and central Europe the variability of drought severity for different seasons and time-scales is strongly associated with the WI. On the contrary, the influence of the NAO on southern Europe droughts is stronger than that exerted by the WI. The correlation patterns of the NAO and WI with the SPEI show a spatial complementarity in shaping drought variability across Europe. Lagged correlations of the NAO and WI with the SPEI also indicate enough skill of both indices to anticipate drought severity several months in advance. As long as instrumental series of the NAO and WI are available, their combined use would allow inferring European drought variability for the last two centuries and improve the calibration and interpretation of paleoclimatic proxies associated with drought.
Resumo:
In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.
Resumo:
We present a detailed study of the neutral and ionized gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (∼10^7 M_⊙) is detected in a central region of ∼1.75 kpc size. This neutral gas is blueshifted by ∼165 km s^−1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionized warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ∼−30 km s^−1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.