40 resultados para galaxies : abundances
Resumo:
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z ~ 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/Hβ ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/Hβ versus [N II]/Hα and [S II]/Hα) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that "composite" galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly ~2/3 of the z ~ 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
Resumo:
SHARDS is an unbiased ultra-deep spectro-photometric survey with GTC@OSIRIS aimed at selecting and studying massive passively evolving galaxies at z=1.0-2.3 using a set of 24 medium-band filters (FWHM~17 nm) at 500-950 nm in GOODS-N. Our observing strategy is optimized to detect at z>1 the prominent Mg absorption feature at rest-frame ~ 280 nm, a distinctive, necessary, and sufficient feature of evolved stellar populations. Nonetheless, the data quality allow a plethora of studies on galaxy populations, including Emission Lines Galaxies (ELGs) about which we have started our first science verification project presented in this contribution.
Resumo:
Our main objective is to determine what kind of galaxies dominate the cosmic SFR density at z~2. Our sample consists of 24 galaxies in Chandra Deep Field South, a unique field for the study of galaxy evolution (12 observed with GNIRS/GEMINI and 12 with ISAAC/VLT). We use H alpha together with the already merged X-ray, ultraviolet, optical, near and mid-infrared imaging data to obtain estimations of SFRs, metallicities, stellar and dynamical masses, AGN activity, and extinction properties. We have obtained 15 Hα detections, 4 rotation curves, and SFR relationship for 7 galaxies. The metallicities obtained for 8 galaxies of the sample are compatible with the metallicities of local galaxies.
Resumo:
We analyze the properties of star forming regions in a sample of star forming galaxies at z = 0.84. Star forming regions are extracted from B band ACS-HST images. Previously we have substracted a model of the galaxy, fitting a bulged+disk model to the whole galaxy. Special care has been taken masking the star forming regions in the model fitting procedure, yielding more reliable results. We present here the properties of these star forming regions.
Resumo:
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. MEGARA will be a 3rd generation instrument for GTC. It is led by the University Complutense of Madrid with the collaboration of INAOE, IAA, UPM and comprises more than 50 researchers from a large number of institutions worldwide.
Resumo:
Using far-infrared imaging from the "Herschel Lensing Survey," we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z ~ 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources (~90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T_dust ~ 30 K). Several sub-luminous infrared galaxy (LIRG; L_IR < 10^11 L_☉) Bullet Cluster members are much warmer (T_dust > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these "warm dust" galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. "Warm dust" galaxies are, however, statistically rarer in field samples (>3σ), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M_* < 10^10 M_☉). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a "warm dust" galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.
Resumo:
The accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of massive galaxies over cosmic time. Using a sample of 629 massive (M_star~ 10^11 M_⊙) galaxies from the near-infrared Palomar/DEEP-2 survey, we explore what fraction of these objects have satellites with 0.01 < M_sat/M_central < 1 (1:100) up to z= 1 and what fraction have satellites with 0.1 < M_sat/M_central < 1 (1:10) up to z= 2 within a projected radial distance of 100 kpc. We find that the fraction of massive galaxies with satellites, after background correction, remains basically constant and close to 30 per cent for satellites with a mass ratio down to 1:100 up to z= 1, and close to 15 per cent for satellites with a 1:10 mass ratio up to z= 2. The family of spheroid-like massive galaxies presents a 2–3 times larger fraction of objects with satellites than the group of disc-like massive galaxies. A crude estimation of the number of 1:3 mergers a massive spheroid-like galaxy has experienced since z~2 is around 2. For a disc-like galaxy this number decreases to ~1.
Resumo:
We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.
Resumo:
We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 μm), we calculate the obscured star formation rate (SFR). 22^+6.2 _–5.3% of the BCGs are detected in the far-infrared, with SFR = 1-150 M ☉ yr^–1. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Hα emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2 × 10^11 L_☉), only a small (≤0.4 mag) reddening correction is required for SFR(Hα) to agree with SFR_FIR. The relatively low Hα extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.
Resumo:
The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies. We analyze the FIR SEDs of two galaxies that are proposed to be very high-redshift (z > 7) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160 μm, with SPIRE/Herschel at 250, 350 and 500 μm and with LABOCA/APEX at 870 μm. We find that redshifts > 7 would imply extreme FIR SEDs (with dust temperatures >100 K and FIR luminosities >10^13 L_⊙). At z ~ 2, instead, the SEDs of both sources would be compatible with those of typical ultra luminous infrared galaxies or submillimeter galaxies. Considering all available data for these sources from visible to FIR we re-estimate the redshifts and find z ~ 1.6–2.5. Owing to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-to-near-IR part of the SEDs even when additional extinction is included. These sources strongly resemble dust-obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at z = 4. Galaxies with similar SEDs could contaminate other high-redshift surveys.
Resumo:
We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.
Resumo:
We present the active galactic nucleus (AGN), star-forming, and morphological properties of a sample of 13 MIR-luminous (∫_24 700 μJy) IR-bright/optically-faint galaxies (IRBGs, ∫_24/f_R≲ 1000). While these z ∼ 2 sources were drawn from deep Chandra fields with >200 ks X-ray coverage, only seven are formally detected in the X-ray and four lack X-ray emission at even the 2σ level. Spitzer InfraRed Spectrograph (IRS) spectra, however, confirm that all of the sources are AGN-dominated in the mid-IR, although half have detectable polycyclic aromatic hydrocarbon (PAH) emission responsible for ∼25% of their mid-infrared flux density. When combined with other samples, this indicates that at least 30%–40% of luminous IRBGs have star formation rates in the ultraluminous infrared galaxy (ULIRG) range (∼100–2000 M_⨀ yr^−1). X-ray hardness ratios and MIR to X-ray luminosity ratios indicate that all members of the sample contain heavily X-ray obscured AGNs, 80% of which are candidates to be Compton thick. Furthermore, the mean X-ray luminosity of the sample, log L_2–10 keV(erg s^−1) ∼44.6, indicates that these IRBGs are Type 2 QSOs, at least from the X-ray perspective. While those sources most heavily obscured in the X-ray are also those most likely to display strong silicate absorption in the mid-IR, silicate absorption does not always accompany X-ray obscuration. Finally, ∼70% of the IRBGs are merger candidates, a rate consistent with that of sub-mm galaxies (SMGs), although SMGs appear to be physically larger than IRBGs. These characteristics are consistent with the proposal that these objects represent a later, AGN-dominated, and more relaxed evolutionary stage following soon after the star-formation-dominated one represented by the SMGs.
Resumo:
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Luminous Infrared (IR) Galaxies (LIRGs, L_IR=10^11-10 L_⨀) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a guaranteed time observation (GTO) Spitzer InfraRed Spectrograph (IRS) program aimed to obtain spectral mapping of a sample of 14 local d<76Mpc LIRGs. The data cubes map, at least, the central 20arcsec X 20arcsec to 30 arcsec X 30 arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38 μ m spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [Ne II] 12.81 μ m, [Ne III]15.56 μ m, [S III] 18.71 μ m, H_2 at 17 μ m), continuum, the 6.2 and 11.3 μ m polycyclic aromatic hydrocarbon (PAH) features, and the 9.7 μ m silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7 μ m silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of active galactic nuclei (AGN) indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6 9.7 μ m . We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.