18 resultados para Telescopes.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10^(−13) TeV cm^(−2)s^(−1) for the Geminga pulsar and 3.5 × 10^(−12) TeV cm^(−2)s^(−1) for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T_ eq up to 2,000 K, to those of a few Earth masses, with T _eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We investigated in detail the system WDS 19312+3607, whose primary is an active M4.5Ve star previously inferred to be young (τ ~ 300–500 Ma) based on its high X-ray luminosity. Methods. We collected intermediate- and low-resolution optical spectra taken with 2 m-class telescopes, photometric data from the B to 8 μm bands, and data for eleven astrometric epochs with a time baseline of over 56 years for the two components in the system, G 125–15 and G 125–14. Results. We derived the M4.5V spectral types of both stars, confirmed their common proper motion, estimated their heliocentric distance and projected physical separation, determined their Galactocentric space velocities, and deduced a most-probable age of older than 600 Ma. We discovered that the primary, G 125–15, is an inflated, double-lined, spectroscopic binary with a short period of photometric variability of 1.6 d, which we associated with orbital synchronisation. The observed X-ray and Hα emissions, photometric variability, and abnormal radius and effective temperature of G 125–15 AB are indicative of strong magnetic activity, possibly because of the rapid rotation. In addition, the estimated projected physical separation between G 125–15 AB and G 125–14 of about 1200 AU ensures that WDS 19312+3607 is one of the widest systems with intermediate M-type primaries. Conclusions. G 125–15 AB is a nearby (d ≈ 26 pc), bright (J ≈ 9.6 mag), active spectroscopic binary with a single proper-motion companion of the same spectral type at a wide separation. They are thus ideal targets for specific follow-ups to investigate wide and close multiplicity or stellar expansion and surface cooling because of the lower convective efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. During the course of a large spectroscopic survey of X-ray active late-type stars in the solar neighbourhood, we discovered four lithium-rich stars packed within just a few degrees on the sky. Although located in a sky area rich in CO molecular regions and dark clouds, the Cepheus-Cassiopeia complex, these very young stars are projected several degrees away from clouds in front of an area void of interstellar matter. As such, they are very good "isolated" T Tauri star candidates. Aims. We present optical observations of these stars conducted with 1-2 m class telescopes. We acquired high-resolution optical spectra as well as photometric data allowing us to investigate in detail their nature and physical parameters with the aim of testing the "runaway" and "in-situ" formation scenarios. Their kinematical properties are also analyzed to investigate their possible connection to already known stellar kinematic groups. Methods. We use the cross-correlation technique and other tools developed by us to derive accurate radial and rotational velocities and perform an automatic spectral classification. The spectral subtraction technique is used to infer chromospheric activity level in the Hα line core and clean the spectra of photospheric lines before measuring the equivalent width of the lithium absorption line. Results. Both physical (lithium content, chromospheric, and coronal activities) and kinematical indicators show that all stars are very young, with ages probably in the range 10-30 Myr. In particular, the spectral energy distribution of TYC4496-780-1 displays a strong near-and far-infrared excess, typical of T Tauri stars still surrounded by an accretion disc. They also share the same Galactic motion, proving that they form a homogeneous moving group of stars with the same origin. Conclusions. The most plausible explanation of how these "isolated" T Tauri stars formed is the "in-situ" model, although accurate distances are needed to clarify their connection with the Cepheus-Cassiopeia complex. The discovery of this loose association of "isolated" T Tauri stars can help to shed light on atypical formation processes of stars and planets in low-mass clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new-generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4 ± 2.0 m s^-1 and a period of 4.11 days. The planetary minimum mass (m sin i) is 0.488MJ ± 0.015M_J. The planet was initially detected in the spring of 2005 with the Kitt Peak National Observatory (KPNO) 0.9 m coudé feed telescope. The detection was confirmed by radial velocity observations with the ET at the KPNO 2.1 m telescope and also at the 9 m Hobby-Eberly Telescope (HET) with its High Resolution Spectrograph. This planetary discovery with a 0.9 m telescope around a V = 8.05 magnitude star was made possible by the high throughput of the instrument: 49% measured from the fiber output to the detector. The ET's interferometer-based approach is an effective method for planet detection. In addition, the ET concept is adaptable to multiple-object Doppler observations or very high precision observations with a cross-dispersed echelle spectrograph to separate stellar fringes over a broad wavelength band. In addition to spectroscopic observations of HD 102195, we obtained brightness measurements with one of the automated photometric telescopes at Fairborn Observatory. Those observations reveal that HD 102195 is a spotted variable star with an amplitude of ~0.015 mag and a 12.3 ± 0.3 day period. This is consistent with spectroscopically observed Ca II H and K emission levels and line-broadening measurements but inconsistent with rotational modulation of surface activity as the cause of the radial velocity variability. Our photometric observations rule out transits of the planetary companion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present simultaneous and continuous observations of the Hα, Hβ, He I D_3, Na I D_1,D_2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2^d.8. Two large optical flares were observed, both showing an increase in the emission of Hα, Ca II H K, Hβ and He I D_3 and a strong filling-in of the Na I D_1, D_2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Hα and He I D_3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≥ 100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6º from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2_(stat) ± 0.2_(syst) between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≤ 1 − 2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≤ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B_(0), that depend on the CR distribution. For α = 2.2, B_(0) ≥ 5 − 8 µG, which is below the ∼25 µG inferred from Faraday rotation measurements, whereas for α ≤ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM ∼ 17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ∼ 280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Spanish Space Weather Service SeNMEs, www.senores.es, is a portal created by the SRG-SW of the Universidad de Alcala, Spain, to meet societal needs of near real-time space weather services. This webpage-portal is divided in different sections to fulfill users needs about space weather effects: radio blackouts, solar energetic particle events, geomagnetic storms and presence of geomagnetically induced currents. In less than one year of activity, this service has released a daily report concerning the solar current status and interplanetary medium, informing about the chances of a solar perturbation to hit the Earth's environment. There are also two different forecasting tools for geomagnetic storms, and a daily ionospheric map. These tools allow us to nowcast a variety of solar eruptive events and forecast geomagnetic storms and their recovery, including a new local geomagnetic index, LDin, along with some specific new scaling. In this paper we also include a case study analysed by SeNMEs. Using different high resolution and cadence data from space-borne solar telescopes SDO, SOHO and GOES, along with ionospheric and geomagnetic data, we describe the Sun-Earth feature chain for the event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. Aims. Description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. For the constraining of the EBL we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function (< 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the flux changes night by night and also to produce di_erential energy spectra for all nights of the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1:07 (-0.20,+0.24)stat+sys, relative to the one in the tested EBL template (Domínguez et al. 2011), is preferred at the 4:6 σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm,4.25 μm], with a peak value at 1.4 μm of λF_ = 12:27^(+2:75)_ (-2:29) nW m^(-2) sr^(-1), including systematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The gamma-ray binary LS I +61º303 is a well-established source from centimeter radio up to very high energy (VHE; E > 100 GeV). The broadband emission shows a periodicity of ∼26.5 days, coincident with the orbital period. A longer (super-orbital) period of 1667 ± 8 days was proposed from radio variability and confirmed using optical and high-energy (HE; E ¿ 100 MeV) gamma-ray observations. In this paper, we report on a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long-timescale signature in the VHE emission from LS I +61º303. Aims. We focus on the search for super-orbital modulation of the VHE emission, similar to that observed at other energies, and on the search for correlations between TeV emission and an optical determination of the extension of the circumstellar disk. Methods. A four-year campaign has been carried out using the MAGIC telescopes. The source was observed during the orbital phases when the periodic VHE outbursts have occurred (φ = 0.55 – 0.75, one orbit = 26.496 days). Additionally, we included archival MAGIC observations and data published by the VERITAS collaboration in these studies. For the correlation studies, LS I +61◦303 has also been observed during the orbital phases where sporadic VHE emission had been detected in the past (φ = 0.75 – 1.0). These MAGIC observations were simultaneous with optical spectroscopy from the LIVERPOOL telescope. Results. The TeV flux of the periodical outburst in orbital phases φ = 0.5 – 0.75 was found to show yearly variability consistent with the long-term modulation of ∼4.5 years found in the radio band. This modulation of the TeV flux can be well described by a sine function with a best-fit period of 1610±58 days. The complete data, including archival observations, span two super-orbital periods. There is no evidence for a correlation between the TeV emission and the mass-loss rate of the Be star, but this may be affected by the strong, short-timescale (as short as intra-day) variation displayed by the Hα fluxes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BL Lac object 1ES 1011+496 was discovered at Very High Energy (VHE, E>100GeV) γ-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Mets¨ahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10^(−11) photons cm^(−2) s^( −1) . The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one–zone synchrotron self–Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.