124 resultados para Cyanobacteria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ser/Thr蛋白激酶(serine/threonine kinases,STK)在真核生物的信号转导通路中具有重要作用,而且已经成为对抗肿瘤、结核等多种人类疾病的药物作用靶点。上世纪九十年代,有研究发现STK在原核生物的信号转导中也发挥重要作用。本论文以聚球藻PCC7942(Synechococcus sp. PCC7942)和钝顶螺旋藻(Spirulina platensis)为材料,对几个真核型的Ser/Thr蛋白激酶基因的功能进行了初步验证。 蓝藻兼具细菌和植物的特点,具有成熟的转化体系,为真核生物基因功能的研究提供了新的模式宿主。聚球藻PCC7942是一种单细胞的淡水蓝藻,具有天然的外源DNA转化系统,是蓝藻分子遗传学研究的模式生物。通过基因敲除及表达差异分析发现聚球藻PCC7942中的Ser/Thr蛋白激酶stk196参与高温胁迫的信号传递。钝顶螺旋藻是原核丝状蓝藻,由于其蕴涵高品质营养成分而成为一类具有重要经济价值的微藻,该研究利用半定量RT-PCR方法,分析四个具有跨膜结构域的Ser/Thr蛋白激酶在正常生长温度下和经低温、高温诱导后表达量的变化情况,发现stk2103在低温诱导后的表达量降低,高温诱导后的表达量升高,提示该基因的表达可能参与了钝顶螺旋藻对温度的适应。 蓝藻中真核型Ser/Thr蛋白激酶功能的研究为我们进一步研究真核生物的Ser/Thr蛋白激酶功能提供了借鉴,并对植物抗逆胁迫的研究提供重要的理论依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey was carried out in the central and north part of the Huanghai Sea (34.5degrees similar to 37.0degreesN, 120.5degrees similar to124.0degreesE) during June 12 similar to 27, 2000. It was found that the abundance of marine flagellate ranged from 45 to 1278 cell/ml, 479 cell/ml in average. Flagellate was more abundant in the central part than in the north part of Huanghai Sea, and the abundance decreased with the increasing distance from the coast, showing a similar distribution pattern with isotherm. Vertically, high density of flagellate was always presented in the bottom of thermocline, and formed a dense accumulation in the central area of the Huanghai Sea Cold Water Mass. The effects of physical and biological factors on the distribution of marine flagellate in early summer were discussed. Water temperature (especially the existence of thermocline) rather than salinity showed significant effect on the distribution pattern of marine flagellate in the Huanghai Sea in early summer. When comparing the abundance of marine flagellate with that of other microorganisms, it revealed a comparatively stable relationship among these organhisms, with a ratio of heterotrophic bacteria: cyanobacteria: flagellate: dinoflagellate: ciliate being 10(5) 10(3):10(2):10(1):10(0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.