199 resultados para Biosensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H2O2 was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H2O2 without electron mediator or promoter, at a potential of +0.10 V versus Ag \ AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N = 3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR) biosensor was used for the first time to determine the concentration of ferritin in both HBS-EP buffer and serum. The monoclonal antibody was immobilized on the carboxymethyl dextran-modified gold surface by an amine coupling method. The interaction of antibody with antigen was monitored in real-time. The signal was enhanced by sandwich amplification strategy to improve the sensitivity and specificity of the immunoassay, especially in serum. The linear range of the assay in serum is over 30-200 ng ml with the detection limit of 28 ng ml(-1). The sensitivity, specificity, and reproducibility of the assay are satisfactory. The analyte and enhancement antibody-binding surface could be regenerated by pH 2.0 glycine-HCl buffer and the same antibody-immobilized surface could be used for more than 50 cycles of ferritin binding and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A toluidine blue modified gold electrode was constructed using self-assembled silica gel technique. Firstly, toluidine blue was encapsulated within 3D network of silica self-assembly monolayer on the surface of gold electrode. Secondly, another layer of silica sol was further assembled to protect from leaching of mediator or possible contamination. The electrochemical characteristics of toluidine blue immobilized within self-assembled silica gel were studied in detail. The modified electrode was applied for electrochemical oxidation of NADH with satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel flow injection optical fiber biosensor for glucose based on luminol electrochemiluminescence (ECL) is presented. The sol-gel method is introduced to immobilize glucose oxidase (GOD) on the surface of a glassy carbon electrode. After optimization of the working conditions, glucose could be quantitated in the concentration ranges between 50 muM and 10 mM with a detection limit of around 26 muM. Signal reproducibility was about 3.62% relative standard deviation for 11 replicated measurements of 0.1 mM glucose. The ECL biosensor also showed good selectivity and operational stability. The proposed method can be applied to determination of glucose in soft drink samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vesicle of didodecyldhnethylammonimn bromide (DDAB) which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 x 10(-7) mol/L and the liner range was from 4 x 10(-7) mol/L to 2.4 x 10(-6) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0 x 10(-5) and 1.3 x 10(-3) M glucose. The biosensor showed a good suppression of interference in the amperometric detection.