21 resultados para yield estimation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts. Our calculated values of lattice energies agree well with available experimental and theoretical values for diverse ionic crystals. This method, which requires detailed crystallographic information and elaborate computation, might be extended and possibly yield further insights with respect to bond properties of materials.
Resumo:
The influence of threshold stress on the estimation of the Weibull statistics is discussed in terms of the Akaike information criterion. Numerical simulations show that, if sample data are limited in number and threshold stress is not too large, the two-parameter Weibull distribution is still a preferred choice. For example, the fit of strength data of glass and ceramics to the two- and three-parameter Weibull distributions is compared.
Resumo:
Using spatially averaged global model, we succeed in obtaining some plasma parameters for a low pressure inductively coupled plasma source of our laboratory. As far as the global balance is concerned, the models can give reasonable results of the parameters, such as the global electron temperature and the ion impacting energy, etc. It is found that the ion flow is hardly affected by the neutral gas pressure. Finally, the magnetic effects are calculated by means of the method. The magnetic field can play an important role to increase plasma density and ion current.
Resumo:
The LY12-cz aluminium alloy sheet specimens with a central hole were tested under constant amplitude loading, Rayleigh narrow band random loading and a typical fighter broad band random loading. The fatigue life was estimated by means of the nominal stress and the Miner's rule. The stress cycles were distinguished by the rainflow count, range count and peak value count, respectively. The comparison between the estimated results and the test results was made. The effects of random loading sequence and small load cycles on fatigue life were also studied.
Resumo:
Random field theory has been used to model the spatial average soil properties, whereas the most widely used, geostatistics, on which also based a common basis (covariance function) has been successfully used to model and estimate natural resource since 1960s. Therefore, geostistics should in principle be an efficient way to model soil spatial variability Based on this, the paper presents an alternative approach to estimate the scale of fluctuation or correlation distance of a soil stratum by geostatistics. The procedure includes four steps calculating experimental variogram from measured data, selecting a suited theoretical variogram model, fitting the theoretical one to the experimental variogram, taking the parameters within the theoretical model obtained from optimization into a simple and finite correlation distance 6 relationship to the range a. The paper also gives eight typical expressions between a and b. Finally, a practical example was presented for showing the methodology.
Resumo:
A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The tension and compression of single-crystalline silicon nanowires (SiNWs) with different cross-sectional shapes are studied systematically using molecular dynamics simulation. The shape effects on the yield stresses are characterized. For the same surface to volume ratio, the circular cross-sectional SiNWs are stronger than the square cross-sectional ones under tensile loading, but reverse happens in compressive loading. With the atoms colored by least-squares atomic local shear strain, the deformation processes reveal that the failure modes of incipient yielding are dependent on the loading directions. The SiNWs under tensile loading slip in {111} surfaces, while the compressive loading leads the SiNWs to slip in the {110} surfaces. The present results are expected to contribute to the design of the silicon devices in nanosystems.
Resumo:
The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.
Resumo:
The prediction and estimate of water and soil loss is fundamental important for understanding the effect of the spatial heterogeneity of underlying surfaces and preventing ecological environment deterioration. In this paper, a dynamic model of runoff and sediment yield in small watersheds is established. The proposed model includes three components: runoff generation caused by rainfall, soil erosion on hillslopes by overland flow, and runoff concentration and sediment transport on watersheds. Applying the proposed model, the runoff and sediment yield processes in a typical catchment on the loess plateau was estimated, which exhibited a good agreement between predicted results and observation.
Resumo:
Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.
Resumo:
The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found.
Resumo:
Two overrun effects in the Coulomb explosion dynamics of heteronuclear clusters have been investigated theoretically by the use of a simplified electrostatic model. When the charge-to-mass ratio of light ions is higher than that of heavy ions, the light ions can overtake the heavy ions inside the cluster and acquire a higher kinetic energy. Further, if the charge density of the heavy ions is twice as high as that of the light ions, i.e. a proposed competitive parameter xi = rho BqB/rho AqA > 2, the inner light ions can overtake those light ions on the surface of the cluster and form a shock shell during the explosion, which might drive the intracluster collision and fusion of the light ions. Different regimes of nuclear fusion are discussed and the corresponding neutron yields are estimated. Our analysis indicates that the probability of intracluster fusion is quite low even if deuterated heteronuclear clusters such as (DI)(n) with large size and high competitive parameter are employed. However, heteronuclear clusters are still a better candidate compared with homonuclear clusters for enhancing the total intercluster fusion yield because both a higher energy region and a higher proportion of deuterons distributing in the energy region can be created in the deuterated heteronuclear clusters.
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.