79 resultados para winter warming
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The influence of air and soil warming on root vole (Microtus oeconomus L.) population was studied in winter period in top open chambers (OTC) (0.8-1.8 m(2) warmed by conical fiberglass material and situated in alpine meadow (3250 m) at Qinghai-Tibet Plateau, China. The OTCs were distributed on an area of 30 x 30 m of experimental warming site; another site of the same area was a control one. The root vole population was investigated on two pairs of sites in "low-grazing" and "high-grazing" (by sheep) parts of the meadow; mark-recapture method was used. The winter-season averaged air and soil temperature inside of the chambers were 1.3 degrees C higher than the temperature outside the chambers. The warming in the chambers had no statistically significant effect on root vole numbers, on average body mass of individual, and on average body mass of males and females. In conclusion, as small as 1.3 degrees C warming of soil and air introduced locally and on small (several m(2)) scale, in the alpine meadow habitat in winter period, has possibly no effect on root vole numbers and biomass.
Resumo:
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46A degrees C higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53A degrees C during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.
Resumo:
[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.
Resumo:
We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.
Resumo:
Our goal was to determine the effect of diets with different crude protein (CP) contents and metabolizable energy (W) levels on daily live-weight gain, apparent digestibility, and economic benefit of feedlot yaks on the Tibetan plateau during winter. Yaks were either 2- or 3-years old and randomly selected from the same herd. The 3-year-olds were placed into one of two experimental groups (A and B) and a control (CK1), and the two-year-olds were placed into one of three experimental groups (C, D and E) and a control (CK2) (N per group = 5). Yak in the control groups were allow graze freely, while those in the experimental groups yaks were fed diets higher in contains crude protein and metabolizable energy through a winter period inside a warming shed. Results indicated that live-weight gain of treatment groups was higher than their respective controls during experiment, and that daily live-weight gain of every 10 days among different treatments was significant difference (P < 0.05). In addition, apparent digestibility of different diets was linearly and positively related to feedlotting time, and feed conversion efficiency for A, C, D and E groups was quadratically related to feedlotting time (P < 0.01), however, feed conversion efficiency for B group was linearly and positively related to feedlotting time (P < 0.05). The economic benefit was 1.15 for A, 1.89 for B, 1.16 for C, 1.54 for D, and 4,52 for E. (c) 2005 Elsevier B.V. All rights reserved.