10 resultados para whistle-blowing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.
Resumo:
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the first systematic study of acoustic signals during social interactions of the Chinese alligator (Alligator sinensis). Sound pressure level (SPL) measurements revealed that Chinese alligators have an elaborate acoustic communication system with both long-distance signal-bellowing-and short-distance signals that include tooting, bubble blowing, hissing, mooing, head slapping and whining. Bellows have high SPL and appear to play an important role in the alligator's long range intercommunion. Sounds characterized by low SPL are short-distance signals used when alligators are in close spatial proximity to one another. The signal spectrographic analysis showed that the acoustic signals of Chinese alligators have a very low dominant frequency, less than 500 Hz. These frequencies are consistent with adaptation to a habitat with high density vegetation. Low dominant frequency sound attenuates less and could therefore cover a larger spatial range by diffraction in a densely vegetated environment relative to a higher dominant frequency sound. (C) 2007 Acoustical Society of America.
Resumo:
Source levels and phonation intervals of whistles produced by a free-ranging baiji (Chinese river dolphin) were measured in the seminatural reserve of Shishou in Hubei, China. A total of 43 whistles were recorded over 12 recording sessions. The mean dominant frequency (the frequency at the highest energy) was 5.7 kHz (s.d.=0.67). The calculated source level was 143.2 dB rms re 1 mu Pa (s.d.=5.8). Most phonation intervals were shorter than 460 s, and the average interval was 205 s (s.d. = 254). Theoretical detection range of baiji's whistle was 6600 m at the present study site, but it could reduce a couple of hundred meters in practical noisy situation in the Yangtze River. Sporadic phonation (205 s interval on average) with relatively faint signal of baiji was considered, to be difficult to be detected by a towing hydrophone system. Stationed monitoring or slow speed towing of hydrophones along the river current is recommended. (c) 2006 Acoustical Society of America.
Resumo:
大型制冷机组部件众多,管路比较复杂,又是必须承受高压的容器,安装、调试都有严格的要求。以30HXC165A制冷机组的现场冲洗、调试为例,详细介绍了大型制冷机组在试运行之前标准的准备工作。这些工作包括吹扫、试压、排污、充注制冷剂和冲洗调试等全部过程及注意事项。本文为大型螺杆式制冷机组这种压力容器设备的运行和维护管理提供了工程实践经验。结果表明:在施工调试过程中,只有各方互相协调,并且严格按照相关文件和规范要求才能顺利完成制冷机组的安装调试,为以后的正常运行打下基础。
Strict requirements must be met during the installation and commissioning program for the large-scale chiller units since it has multitudinous components and complicated pipelines with high-pressure vessels. Preparation program was present in detail for large-scale chiller units before commissioning as the example of 30HXC165A chiller units. The total arrangement was considered about chiller units in terms of blowing, pressure trial, drainage, refrigerant filling, flushing and commissioning. The paper also provides the operation and maintenance engineering experience for large-scale screw chiller units. The results indicate that installation and commissioning can be achieved only strict abidance the related regulations demand based on harmony of all engineering participants (owners, engineering, providers etc.). Furthermore, favorable installation and commissioning work can provide the reliable foundation of normal operation.
Resumo:
Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles. Numerical analysis is performed for particle velocity distribution with a discrete particle model. The probability distributions of resultant particle velocity in the impact-entrainment process, particle horizontal and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a log-normal function, and that of impact angle comply with an exponential function. The probability distribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern. In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further analysis shows that the probability density function of the vertical velocity of ascending particles is similar to the right-hand part of a normal distribution function, and a general equation is acquired for the probability density function of non-dimensional vertical velocity of ascending particles which is independent of diameter of saltating particles, wind strength and height. These distributions in the present numerical analysis are consistent with reported experimental results. The present investigation is important for understanding the saltation state in wind-blown sand movement. (C) 2009 Elsevier B.V. All rights reserved.