11 resultados para water sorption

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surfactant assistant syntheses of sulfonic acid functionalized periodic mesoporous organosilicas with large pores are reported. A one-step condensation of tetramethoxysilane (TMOS) with 1,2-bis(trimethoxysilyi)ethane (BTME) and 3-mercaptopropyltrimethoxysilane (MPTMS) in highly acidic medium was performed in the presence of triblock copolymer Pluronic P123 and inorganic salt as additive. During the condensation process, thiol (-SH) group was in situ oxidized to sulfonic acid (-SO3H) by hydrogen peroxide (30 wt % H2O2). X-ray diffraction studies along with nitrogen and water sorption analyses reveal the formation of stable, highly hydrophobic, and well-ordered hexagonal mesoscopic structures in a wide range of -CH2CH2-concentrations in the mesoporous framework. The resultant materials were also investigated by Si-29 MAS and C-13 CP MAS NMR, thermogravimetric analyses, UV-Raman spectroscopy, and FT-IR spectroscopy. The role of the bridged organic group on the hydrothermal stability of the mesoporous materials was established, which revealed an enhancement in hydrothermal stability of the materials with incorporation of the bridged organic groups in the network. The catalytic performance of -SO3H functionalized mesoporous materials was investigated in the esterification of ethanol with acetic acid, and the results demonstrate that the ethane groups incorporated in the mesoporous framework have a positive influence on the catalytic behavior of the materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reported the sorption, biodegradation and isomerization of hexachlorocyclohexane (HCH) in laboratory sediment/water system under aerobic and anaerobic conditions, respectively. The effect of organic nutrient addition to the sorption of HCH was also investigated. It indicates that HCH is highly adsorbed on sediments under both conditions. During the tests, the biodegradation and isomerization of HCH were dramatically speeded up after organic nutrient additions, especially in the case of the observation under aerobic condition. It was found, beta-HCH was the most persistent in the environment, that is due to the isomerization of alpha-HCH in a big amount to beta-HCH, besides its chemical stability. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water vapor absorption and desorption by poly (phenylene oxide) (PPO) and sulfonated PPO (SPPO) membranes were studied at a constant temperature of 30-degrees-C and over a broad range of water activity (0.05 less-than-or-equal-to a < 0.8) by the weighing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water solubility enhancements of six phthalates (five aliphatic phthalates and one phenyl phthalate) by cetyltrimethylammonium bromide (CTAB) and beta-cyclodextrin (beta-CD) were studied at 25 degreesC. The solubilities of these plithalates are remarkably enhanced by CTAB solutions above the critical micelle concentration (cmc). Only marginal enhancement of phthalate solubility was observed in solutions containing CTAB below its cmc and beta-CD at low concentrations (less than 5 mM). The solubility enhancements of the plithalates are proportional to the added amount of CTAB and beta-CD. Partition coefficients of the plithalates between monomeric CTAB surfactant and water (K-MN) and between CTAB micelle and water K-MC) were estimated from the experimental data. The mechanisms of solubility enhancements by CTAB and beta-CD were discussed. A log-linear equation was proposed and evaluated for the solubilization by CTAB below cmc, while the previously proposed linear partitioning model was questioned. The structures of the complexes formed between plithalates and beta-CD were proposed, and the formation constants were estimated. The values of log K-MC, log K-MN, and log Kbeta-CD of the plithalates were found to correlate linearly with the log K-OW of plithalates, with the exception of the solid phenyl phthalate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The swelling processes of an annealed poly (vinyl alcohol) membrane, a NaOH-crosslinked poly (vinyl alcohol) membrane, a poly (vinyl alcohol)-N,N'-methylene bisacrylamide irradiation-crosslinked membrane and a poly (vinyl alcohol)/poly(AMcoAANa) blend membrane were investigated. Water was preferentially sorbed by all four membranes. The selective sorption factor alpha(s) and the selective diffusion factor alpha(d) were defined, and were used to characterize the effects of sorption and diffusion on selectivity. The results have shown that preferential sorption has a marked effect on selectivity. The mean diffusion coefficients and pervaporation properties of the four membranes are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sorption and desorption of Cu and Cd by two species of brown macroalgae and five species of microalgae were studied. The two brown macroalgae, Laminaria japonica and Sargassum kjellmanianum, were found to have high capacities at pHs between 4.0 and 5.0 while for microalgae, optimum pH lay at 6.7. The presence of other cations in solution was found to reduce the sorption of the target cation, suggesting a competition for sorption sites on organisms. Sorption isotherms obeyed the Freundlich equation, suggesting involvement of a multiplicity of mechanisms and sorption sites. For the microalgae tested, Spirulina platensis had the highest capacity for Cd, followed by Nannochloropsis oculata, Phaeodactylum tricornutum, Platymonas cordifolia and Chaetoceros minutissimus. The reversibility of metal sorption by macroalgae was examined and the results show that both HCl and EDTA solutions were very effective in desorbing sorbed metal ions from macroalgae, with up to 99.5% of metals being recovered. The regenerated biomass showed undiminished sorption performance for the two metals studied, suggesting the potential of such material for use in water and wastewater treatment. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.