54 resultados para vesicles
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this Letter, we report the morphological transition of dry block copolymer vesicles into onion-like multilamellar micelles induced through heating. When the temperature is higher than the glass transition temperature of block copolymer, the vesicles can collapse, and finally form onion-like multilamellarmicelles via micro phase separation. This phenomenon is observed in both A-B and A-B-A block copolymer vesicles, indicating that the technique used in this study can be an alternative method to synthesize multilamellar micelles.
Resumo:
We report the interesting finding that crystallization of calcium carbonate (CaCO3) in the presence of dimyristoylphosphatidylglycerol (DMPG) vesicles by a simple gas diffusion method results in the formation of unusual microscopic CaCO3 spherules. The experimental results indicate that the as-prepared CaCO3 spherules, which have a complex macroporous structure, are predominantly vaterite. It is believed that DMPG vesicles play an important role in the process of crystallization, and the possible formation mechanism is proposed.
Resumo:
This report describes a facile route to prepare the vesicles and large compound micelles (LCMs) from a series of poly(epsilon-benzyloxycarbonyl L-lysine)-block-poly[diethylene glycol bis(3-amino propyl) ether]-block-poly(epsilon-benzyloxycarbonyl L-lySine) (PZLL-DGBE-PZLL) in their water solution, depending on molecular weight of the polypeptides. A pyrene probe is used to demonstrate the aggregate formation of PZLL-DGBE-PZLL in solution, and also to measure their critical micelle concentration as a function of molecular weight of the polymer.
Resumo:
Self-assembling of synthesized novel biodegradable hyperbranched amphiphilic poly(ethylene glycol)-polyethylenimine-poly(epsilon-benzyloxycarbonyl-L-lysine) (PEG-PEI-PLys(Z)) in aqueous media is studied. In aqueous media. PLys(Z) is the hydrophobic segment, with PEG and PEI as the hydrophilic segments. It will self-assemble into spherical shape when the selected solvent water is dropped into the common solvent tetrahydrofuran (THF). And when PEG-PEI-PLYS in common solvent is dropped into mixed solvent water and THF, rings will come into King. The spherical and rings are observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy ITEM). It shows that the size of the sphere is about 100 nm, and the diameter of ring distributes from 400 nm to 10 mu m and bigger with the time roll around.
Resumo:
Novel pi-conjugated coil-rod-coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self-assemble into diverse aggregating morphologies including spherical micelles and thin-layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self-assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.
Resumo:
An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.
Resumo:
Substantial progress has been made recently in extending the supramolecular assembly of biomimetic structures to vesicle-based sophisticated nanocomposites and mesostructures. We report herein the successful preparation of unilamellar surfactant vesicles coated with a monolayer of ring-shaped {Mo-154} polyoxometalate (POM) nanoclusters, (NH4)(28)[Mo-154 (NO)(14)O(448)Hi(4)(H2O)(70)].approximate to 350H(2)O, by coulomb attractions using preformed didodecyldimethylammonium bromide (DDAB) surfactant vesicles as templates. The resultant vesicle-templated supramolecular assemblies are robust (they do not disintegrate upon dehydration) both at room-temperature ambient and vacuum conditions, as characterized by conventional transmission electron microscopy (TEM) and atomic force microscopy (AFM). The flexibility of the complex soft assemblies was also revealed by AFM measurements. The effect of POM-vesicle coulomb attractions on the dimensions of the templating vesicles was also investigated by using dynamic light scattering (DLS).Although origins of the structure stability of the as-prepared supramolecular assemblies are not clear yet, the nanometer scale cavities and the related properties of macroions of the POM clusters may play an important role in it.
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper we take nile blue A (NBA) as a probe molecule to study the influence of the conformational transition of DNA induced by didodecyldimethylammonium bromide (DDAB) cationic vesicles to the interaction between DNA and the probe molecules. We find that upon binding to DNA, a secondary conformational transition of DNA induced by the cationic liposome from the native B-form to the C-form resulted in the change of binding modes of NBA to DNA and different complexes are formed between DNA, DDAB and NBA.
Resumo:
The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.
Resumo:
在有花植物受精过程中,具有顶端极性生长特性的花粉管是雄性生殖单位的载体,同时也是研究细胞生长分子调控机理的理想体系。与被子植物相比,裸子植物花粉具有萌发时间长、花粉管生长缓慢等特点。对于裸子植物花粉萌发和花粉管生长的机理,目前人们尚不十分清楚。本文将以裸子植物白杄(Picea meyeri)花粉为材料,应用不同浓度的分泌系统干扰剂Brefeldin A处理,并通过细胞学和生理生化方法,其中包括普通光学显微镜、荧光显微镜、激光扫描共聚焦显微镜、显微红外光谱(FTIR)和透射电镜(TEM)等技术,对其花粉萌发和花粉管生长过程中胞吞胞吐的调控,以及与细胞壁建成的关系等进行较为系统的研究,旨在为进一步揭示裸子植物花粉管发育的调控机理提供参考。 首先比较观察了各种细胞器在白杄与被子植物花粉管中的分布差异。经FM4-64探针标记结果表明,在正常生长的白杄花粉管顶端存在分泌小泡积累的透明区,但与被子植物比较起来,此透明区在花粉管中所占比例较小,且不呈倒“V”字型。在透射电镜下观察发现,其花粉管顶端透明区内分泌小泡的分布密度远低于被子植物。另外,在白杄花粉管中,线粒体的分布一般靠近细胞壁的地方,高尔基体分布较为分散,而内质网的分布则不具方向性。 其次,研究了BFA对白杄花粉萌发和花粉管生长的影响,特别是对其花粉管生长过程中的胞吐/胞吞作用。通常在正常生长的白杄花粉管中,用FM4-64标记后发现,在其顶端形成与透明区对应的荧光亮区;超微结构显示,在花粉管顶端进行旺盛的胞吐作用,许多分泌小泡正与质膜融合,以及分布有大量显示高分泌活性的壁旁体(PB)等。而经过BFA处理后,花粉的萌发和花粉管的生长均受到严重抑制,花粉管出现了弯曲(波状生长)或顶端膨大等异常形态,同时还干扰了FM4-64在花粉管顶端的标记模式。另外,花粉管顶端分泌小泡数量减少,透明区内充满线粒体、高尔基体和空泡等一些大的细胞器,壁旁体也随之消失,其中高尔基体呈现解体或弯曲的异常形态,在其周围的分泌小泡数量大大减少,内质网出现膨胀和核糖体脱落等;同时胞吐活性标志性酶——酸性磷酸酶的活性也随之降低。通过对FM4-64的染料吸收实验表明,BFA对胞吞有明显的促进作用。由上可见,BFA对白杄花粉管生长过程中的胞吐和胞吞作用起了相反的影响, BFA正是通过扰乱花粉管生长过程中的分泌途径来抑制其花粉管的生长。 最后,检测了白杄花粉管分泌途径紊乱后,管壁物质合成的变化情况。通过FTIR光谱分析表明,BFA处理后花粉管壁化学组分发生了变化,例如蛋白质和多糖含量明显减少,而且与蛋白比较起来,多糖的含量下降更为明显,尤其是在顶端。蛋白和多糖含量的下降导致花粉管壁的组成结构不够致密。由SDS-PAGE的结果显示, BFA抑制后,花粉管壁中糖蛋白的含量下降了60%,同时很多壁蛋白条带在BFA处理后不表达或含量减少。通过对花粉管壁多糖成分的研究表明,BFA处理还导致纤维素含量下降,而胼胝质在花粉管顶端积累。用识别AGPs的LM6和识别酸性果胶的JIM5对花粉管进行标记,发现BFA处理后AGPs的环状分布消失,酸性果胶质在顶端的含量也明显减少,但在胞质内却形成一些小的分隔亮点(compartments)。 综上所述,导致裸子植物白杄花粉管生长缓慢的原因,可能与其顶端透明区较小、分泌小泡数量少等有关。另外,从白杄花粉管的细胞质状态和细胞器分布上看,虽然与被子植物相比差异较大,但在其正常生长中仍能进行旺盛地胞吐和胞吞过程。经BFA处理后引起花粉管内分泌系统的紊乱,致使管壁物质不能正常合成,从而导致花粉管的停滞生长。
Resumo:
The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.