24 resultados para verifiable random function

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

实例依赖的可验证随机函数是由文献[1]提出的一个新的密码学概念,它也是构造高安全性的零知识协议(如可重置零知识论证系统)的一个强有力的工具,而这些高安全性的零知识协议在智能卡和电子商务中有着重要的潜在价值。基于非交互ZAP证明系统和random oracle模型中∑OR-协议,给出了实例依赖的可验证伪随机函数的两个高效的实现和相应的安全性证明,提升了这一工具的应用价值。

Relevância:

80.00% 80.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, in. The average analog of the in samplings output by the Boxcar enhances the signal-to-noise ratio by root m, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/ root m. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One novel neuron with variable nonlinear transfer function is firstly proposed, It could also be called as subsection transfer function neuron. With different transfer function components, by virtue of multi-thresholded, the variable transfer function neuron switch on among different nonlinear excitated state. And the comparison of output's transfer characteristics between it and single-thresholded neuron will be illustrated, with some practical application experiments on Bi-level logic operation, at last the simple comparison with conventional BP, RBF, and even DBF NN is taken to expect the development foreground on the variable neuron.. The novel nonlinear transfer function neuron could implement the random nonlinear mapping relationship between input layer and output layer, which could make variable transfer function neuron have one much wider applications on lots of reseach realm such as function approximation pattern recognition data compress and so on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.